全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于风险损失分析的多无人机巡检路径规划研究
Research on Multi-UAV Inspection Path Planning Based on Risk Loss Analysis

DOI: 10.12677/mos.2024.133263, PP. 2897-2910

Keywords: 多无人机系统,城市巡检,路径规划,风险损失,强化学习
Multi-UAV Systems
, Urban Inspection, Path Planning, Risk Loss, Reinforcement Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

当前多无人机系统在执行城市巡检任务时面临巡检点的风险等级冲突性和风险损失动态性问题,为此,本文提出了一种基于风险损失分析的多无人机巡检路径规划方法。首先,该方法定义了巡检点的风险等级和损失计算方法;然后,该方法定义了一种巡检点聚类算法,根据巡检点之间的风险等级相异性和地理位置相近性对巡检点进行聚类,将不同的聚类分配给不同的无人机,避免风险等级相同的巡检点的访问冲突问题,并优化巡检路径长度;最后,该方法提出了一种基于强化学习的路径规划算法,根据实时的风险损失和巡检开销来计算奖励函数,以引导无人机的实时巡检路径规划,兼顾了动态风险规避和巡检效率。实验结果表明,本研究所提出的算法相比于现有算法具有更低的巡检风险损失以及较好的综合性能表现。
In the execution of urban inspection tasks, multi-Unmanned Aerial Vehicle (UAV) systems are currently faced with the issues of conflicting risk levels at inspection points and the dynamic nature of risk loss. To address these issues, this paper proposes a multi-UAV inspection path planning method based on risk loss analysis. Initially, this method defines the risk levels of inspection points and the approach for computing the associated losses. Subsequently, it introduces a clustering algorithm for inspection points that considers the heterogeneity of risk levels and the proximity of geographic locations, grouping inspection points into clusters. Different clusters are then allocated to different UAVs to prevent conflicts due to visiting inspection points with the same risk level and to optimize the length of the inspection path. Lastly, the method introduces a path planning algorithm based on reinforcement learning, which employs a reward function calculated from real-time risk loss and inspection costs to guide the UAVs’ real-time inspection route determination, thus considering both dynamic risk avoidance and inspection efficiency. Experimental results show that the proposed algorithm outperforms existing methods, offering lower inspection risk loss and better overall performance.

References

[1]  Teixeira, K., Miguel, G., Silva, H.S. and Madeiro, F. (2023) A Survey on Applications of Unmanned Aerial Vehicles using Machine Learning. IEEE Access, 11, 117582-117621.
https://doi.org/10.1109/ACCESS.2023.3326101
[2]  Raja, A., Njilla, L. and Yuan, J. (2022) Adversarial Attacks and Defenses toward AI-Assisted UAV Infrastructure Inspection. IEEE Internet of Things Journal, 9, 23379-23389.
https://doi.org/10.1109/JIOT.2022.3206276
[3]  Li, Z., Wu, H., Wang, Q., Wang, W., Suzuki, S. and Namiki, A. (2024) Small UAV Urban Overhead Transmission Line Autonomous Correction Inspection System Based on Radar and RGB Camera. IEEE Sensors Journal, 24, 5593-5608.
https://doi.org/10.1109/JSEN.2023.3317076
[4]  Wu, W., Funabora, Y., Doki, S., Doki, K., Yoshikawa, S., Mitsuda, T. and Xiang, J. (2024) Evaluation and Enhancement of Resolution-Aware Coverage Path Planning Method for Surface Inspection Using Unmanned Aerial Vehicles. IEEE Access, 12, 16753-16766.
https://doi.org/10.1109/ACCESS.2024.3359056
[5]  Shen, K., Shivgan, R., Medina, J., Dong, Z. and Rojas-Cessa, R. (2022) Multidepot Drone Path Planning with Collision Avoidance. IEEE Internet of Things Journal, 9, 16297-16307.
https://doi.org/10.1109/JIOT.2022.3151791
[6]  Wang, C., Yang, X. and Li, H. (2022) Improved Q-Learning Applied to Dynamic Obstacle Avoidance and Path Planning. IEEE Access, 10, 92879-92888.
https://doi.org/10.1109/ACCESS.2022.3203072
[7]  Bayerlein, H., Theile, M., Caccamo, M. and Gesbert, D. (2021) Multi-UAV Path Planning for Wireless Data Harvesting with Deep Reinforcement Learning. IEEE Open Journal of the Communications Society, 2, 1171-1187.
https://doi.org/10.1109/OJCOMS.2021.3081996
[8]  Yan, C., Xiang, X. and Wang, C. (2020) Towards Real-Time Path Planning through Deep Reinforcement Learning for a UAV in Dynamic Environments. Journal of Intelligent & Robotic Systems, 98, 297-309.
https://doi.org/10.1007/s10846-019-01073-3
[9]  李艳, 郭继峰, 罗汝斌. 基于遗传算法与Dubins理论的高速无人系统在多障碍环境中的路径规划[J]. 无人系统技术, 2021, 4(6): 37-45.
[10]  Liu, H.T., Ge, J.Y., Wang, Y., Li, J.C., Ding, K., Zhang, Z.Q., Guo, Z.H., Li, W. and Lan, J.H. (2022) Multi-UAV Optimal Mission Assignment and Path Planning for Disaster Rescue Using Adaptive Genetic Algorithm and Improved Artificial Bee Colony Method. Actuators, 11, Article 4.
https://doi.org/10.3390/act11010004
[11]  Phung, M.D. and Ha, Q.P. (2021) Safety-Enhanced UAV Path Planning with Spherical Vector-Based Particle Swarm Optimization. Applied Soft Computing, 107, Article ID: 107376.
https://doi.org/10.1016/j.asoc.2021.107376
[12]  Liu, Y., Wang, H., Fan, J., Wu, J. and Wu, T. (2021) Control-Oriented UAV Highly Feasible Trajectory Planning: A Deep Learning Method. Aerospace Science and Technology, 110, Article ID: 106435.
https://doi.org/10.1016/j.ast.2020.106435
[13]  Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and Riedmiller, M. (2013) Playing Atari with Deep Reinforcement Learning. arXiv preprint arXiv:1312.5602.
[14]  Hu, W., Yu, Y., Liu, S., She, C., Guo, L., Vucetic, B. and Li, Y. (2023) Multi-UAV Coverage Path Planning: A Distributed Online Cooperation Method. IEEE Transactions on Vehicular Technology, 72, 11727-11740.
https://doi.org/10.1109/TVT.2023.3266817
[15]  Zheng, S. and Liu, H. (2019) Improved Multi-Agent Deep Deterministic Policy Gradient for Path Planning-Based Crowd Simulation. IEEE Access, 7, 147755-147770.
https://doi.org/10.1109/ACCESS.2019.2946659
[16]  Huang, S. and Onta?ón, S. (2020) A Closer Look at Invalid Action Masking in Policy Gradient Algorithms. arXiv preprint arXiv:2006.14171.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133