|
金属接触密封中流体压差对泄漏量的影响研究
|
Abstract:
密封是液压系统正常工作的保障,工作在高温高压环境中的液压元件常采用金属接触密封,本文通过有限元仿真从微观角度研究了流–固耦合作用对金属接触密封的泄漏过程的影响。首先基于包含粗糙度均方根与自相关长度的点云函数构建了离散化粗糙面的接触模型,然后提取变形后的接触面进行了单向流–固耦合,分析了流体压力对接触面积和泄漏通道平均高度的影响规律,并计算了在不同压差作用下的泄漏量。研究结果表明:随着压差的增大,流体对金属接触密封接触状态的影响逐渐变大,对流道入口处的形貌影响最大,最后导致密封面的分离度增加。考虑流–固耦合作用后,密封副的泄漏量明显增加,且当流体压差达到接触压力的60%时,会导致泄漏量近似呈指数激增。以上研究成果可以为金属接触密封结构的设计提供指导。
Sealing is essential for the normal operation of hydraulic systems, and metal contact seals are commonly used in hydraulic components operating in high temperature and high pressure environments. This paper investigates the influence of fluid-solid coupling on the leakage process of metal contact seals from a microscopic perspective using finite element simulation. Firstly, a contact model of discretized rough surfaces is constructed based on a point cloud function that includes the root mean square roughness and autocorrelation length. Then, the deformed contact surfaces are subjected to one-way fluid-solid coupling, and the influence of fluid pressure on the contact area and average height of the leakage channel is analyzed. The leakage rates under different pressure differentials are also calculated. The research findings show that, as the pressure differential increases, the influence of the fluid on the contact status of the metal contact seal gradually becomes more significant, especially at the inlet of the flow channel, leading to an increase in the degree of separation of the sealing surfaces. Considering the fluid-solid coupling, the leakage rate of the sealing pair significantly increases, and when the fluid pressure differential reaches 60% of the contact pressure, the leakage rate experiences an approximate exponential increase. These research findings could provide guidance for the design of metal contact sealing structures.
[1] | 闫国华, 武松, 刘勇, 等. 接触式密封结构泄漏模型研究现状及发展[J]. 流体机械, 2022, 50(10): 61-69. |
[2] | 房桂芳, 刘其和, 魏龙. 工作参数对接触式机械密封端面接触特性的影响[J]. 液压与气动, 2021(1): 105-110. |
[3] | Yu, Q., Sun, J., Ma, C. and Zhang, Y. (2019) A Percolation Method of Leakage Calculation and Prediction Within the Mechanical Seal Interface. Journal of Tribology, 141, 1-28. https://doi.org/10.1115/1.4044671 |
[4] | 钱进, 陈果, 赵正大, 等. 管路连接件粗糙表面接触力学分析与密封性能分析[J/OL]. 润滑与密封, 1-9. http://kns.cnki.net/kcms/detail/44.1260.TH.20231208.1320.006.html, 2023-12-19. |
[5] | 李龙飞, 周思柱, 李美求, 等. 基于分形理论的圆柱面接触密封特性分析[J]. 机床与液压, 2023, 51(14): 33-38. |
[6] | 郝木明, 周芮, 孙彭涛, 等. 接触式机械密封启停过程摩擦特性实验研究[J]. 润滑与密封, 2023, 48(9): 41-46. |
[7] | 李顺洋, 万力, 桂南, 等. 基于弹塑性接触和渗流模型的静密封泄漏计算[J]. 清华大学学报(自然科学), 2023, 63(8): 1264-1272. https://doi.org/10.16511/j.cnki.qhdxxb.2023.25.040 |
[8] | 葛家理. 现代油藏渗流力学原理[M]. 第3版. 北京: 石油工业出版社, 2003. |
[9] | Yao, J., Yin, Y., Dong, Z., et al. (2020) Design of a 70 MPa Two-Way Proportional Cartridge Valve for Large-Size Hydraulic Forging Press. Journal of Beijing Institute of Technology, 29, 260-272. https://doi.org/10.15918/j.jbit1004-0579.20006 |
[10] | 崔颖, 于颖嘉, 张宏翔, 等. 基于多孔介质理论的双粗糙面金属静密封泄漏模型[J]. 机械工程学报, 2022, 58(21): 215-224. |
[11] | Zhang, Q., Chen, X., Huang, Y. and Y Chen, Y. (2018) Fractal Modeling of Fluidic Leakage through Metal Sealing Surfaces. AIP Advances, 8, Article ID: 045310. https://doi.org/10.1063/1.5023708 |
[12] | 孙见君, 陈国旗, 嵇正波, 等. 接触式机械密封界面泄漏机理分析[J]. 化工学报, 2018, 69(4): 1528-1536. |
[13] | 包超英, 孟祥铠, 李纪云, 等. 基于渗流原理的液体润滑机械密封的泄漏率研究[J]. 流体机械, 2014, 42(11): 24-28 16. |
[14] | Pérez-Ràfols, F., Larsson, R. and Almqvist, A. (2016) Modelling of Leakage on Metal-to-Metal Seals. Tribology International, 94, 94421-94427. https://doi.org/10.1016/j.triboint.2015.10.003 |
[15] | Dapp, W.B., Lücke, A., Persson, B.N.J. and Müser, M.H. (2012) Self-Affine Elastic Contacts: Percolation and Leakage. Physical Review Letters, 108, Article ID: 244301. https://doi.org/10.1103/PhysRevLett.108.244301 |
[16] | 由成林. 弧齿锥齿轮齿面离散化建模及接触分析[D]: [硕士学位论文]. 杭州: 浙江大学, 2011. |
[17] | 陈辉, 胡元中, 王慧, 等. 粗糙表面计算机模拟[J]. 润滑与密封, 2006(10):52-55 59. |
[18] | 曹顺成, 张志强, 肖博, 等. 基于微观接触模型的支撑基座刚度分析[J]. 组合机床与自动化加工技术, 2023(9): 169-172 181. |
[19] | 张健. 安全阀金属密封及整定压力偏差致因研究[D]: [硕士学位论文]. 上海: 华东理工大学, 2018. |