全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分数阶Kirchhoff-Schr?dinger-Poisson系统解的存在性
Existence of Nontrivial Solution for a Class of Fractional Kirchhoff-Schr?dinger-Poisson System

DOI: 10.12677/AAM.2024.135208, PP. 2191-2198

Keywords: 分数阶Kirchhoff-Schr?dinger-Poisson系统,变号权,变分法
Fractional Kirchhoff-Schr?dinger-Poisson System
, Sign-Changing Weight, Variation Methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究如下分数阶Kirchhoff-Schr?dinger-Poisson系统\"\", 非平凡解的存在性, 其中 a, b > 0 ,\"\",? s, t ∈ (0, 1) 且 4s + 2t > 3, W (x) ∈ C(R3) 变号且 lim|x|→∞ W (x) = W < 0 , \"\". 应用山路引理, 本文得到该系统至少存在一个非平凡解.
In this paper, we study the existence of nontrivial solution for fractional Kirchhoff- Schrdinger-Poisson system:\"\", where a, b > 0, \"\" , s, t ∈ (0, 1) and 4s + 2t > 3, W (x) ∈ C(R3) is a sign-changing function with lim|x|→∞ W (x) = W < 0, \"\". By using mountain pass lemma, we obtain that this system has at least one nontrivial solution.

References

[1]  Deng, Y.B., Peng, S.J. and Shuai, W. (2015) Existence and Asymptotic Behavior of Nodal Solutions for the Kirchhoff-Type Problems in R3. Journal of Functional Analysis, 269, 3500- 3527.
https://doi.org/10.1016/j.jfa.2015.09.012
[2]  He, Y. (2016) Concentrating Bounded States for a Class of Singularly Perturbed Kirchhoff Type Equations with a General Nonlinearity. Journal of Differential Equations, 261, 6178- 6220.
https://doi.org/10.1016/j.jde.2016.08.034
[3]  Li, G. and Ye, H. (2014) Existence of Positive Ground State Solutions for the Nonlinear Kirchhoff Type Equations in R3. Journal of Differential Equations, 257, 566-600.
https://doi.org/10.1016/j.jde.2014.04.011
[4]  Mao, A. and Chang, H. (2016) Kirchhoff Type Problems in RN with Radial Potentials and Locally Lipschitz Functional. Applied Mathematics Letters, 62, 49-54.
https://doi.org/10.1016/j.aml.2016.06.014
[5]  Wang, D.B. (2020) Least Energy Sign-Changing Solutions of Kirchhoff-Type Equation with Critical Growth. Journal of Mathematical Physics, 61, Article 011501.
https://doi.org/10.1063/1.5074163
[6]  Xie, Q., Ma, S., Zhang, X. (2016) Bound State Solutions of Kirchhoff Type Problems with Critical Exponent. Journal of Differential Equations, 261, 890-924.
https://doi.org/10.1016/j.jde.2016.03.028
[7]  陈莉萍. 一类带变号权Kirchhoff方程解的存在性[J]. 应用数学进展, 2023, 12(4): 1567-1573.
https://doi.org/10.12677/AAM.2023.124161
[8]  Willem, M. (1996) Minimax Theorems. Birkha¨user, Boston.
https://doi.org/10.1007/978-1-4612-4146-1
[9]  Cerami, G. and Vaira, G. (2010) Positive Solutions for Some Non-Autonomous Schro¨dinger- Poisson Systems. Journal of Differential Equations, 248, 521-543.
https://doi.org/10.1016/j.jde.2009.06.017
[10]  Yu, X.H. (2011) Existence of Solutions for Schro¨dinger-Poisson Systems with Sign-Changing Weight. Journal of Partial Differential Equations, 24, 180-194.
https://doi.org/10.4208/jpde.v24.n2.7
[11]  余晓辉. 一类薛定号-泊松方程解的存在性[J]. 应用数学, 2010, 23(3): 648-652.
[12]  孟娟霞. 一类分数阶薛定号-泊松系统非平凡解的存在性[J]. 应用数学进展, 2023, 12(4): 1704-1712.
https://doi.org/10.12677/AAM.2023.124177
[13]  Laskin, N. (2000) Fractional Quantum Mechanics and L′evy Path Integrals. Physics Letters A, 268, 298-305.
https://doi.org/10.1016/S0375-9601(00)00201-2
[14]  Laskin, N. (2002) Fractional Schro¨dinger Equation. Physical Review E, 66, 56-108.
https://doi.org/10.1103/PhysRevE.66.056108
[15]  Bisci, G.M., R?adulescu, V.D. and Servadei, R. (2016) Variational Methods for Nonlocal Frac- tional Problems. Cambridge University Press, Cambridge.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133