|
分数阶Kirchhoff-Schr?dinger-Poisson系统解的存在性
|
Abstract:
本文研究如下分数阶Kirchhoff-Schr?dinger-Poisson系统,
非平凡解的存在性, 其中 a, b > 0 ,
,? s, t ∈ (0, 1) 且 4s + 2t > 3, W (x) ∈ C(R3) 变号且 lim|x|→∞ W (x) = W∞ < 0 ,
. 应用山路引理, 本文得到该系统至少存在一个非平凡解.
In this paper, we study the existence of nontrivial solution for fractional Kirchhoff- Schr?dinger-Poisson system:,
where a, b > 0,
, s, t ∈ (0, 1) and 4s + 2t > 3, W (x) ∈ C(R3) is a sign-changing function with lim|x|→∞? W (x) = W∞ < 0,
. By using mountain pass lemma, we obtain that this system has at least one nontrivial solution.
[1] | Deng, Y.B., Peng, S.J. and Shuai, W. (2015) Existence and Asymptotic Behavior of Nodal Solutions for the Kirchhoff-Type Problems in R3. Journal of Functional Analysis, 269, 3500- 3527. https://doi.org/10.1016/j.jfa.2015.09.012 |
[2] | He, Y. (2016) Concentrating Bounded States for a Class of Singularly Perturbed Kirchhoff Type Equations with a General Nonlinearity. Journal of Differential Equations, 261, 6178- 6220. https://doi.org/10.1016/j.jde.2016.08.034 |
[3] | Li, G. and Ye, H. (2014) Existence of Positive Ground State Solutions for the Nonlinear Kirchhoff Type Equations in R3. Journal of Differential Equations, 257, 566-600. https://doi.org/10.1016/j.jde.2014.04.011 |
[4] | Mao, A. and Chang, H. (2016) Kirchhoff Type Problems in RN with Radial Potentials and Locally Lipschitz Functional. Applied Mathematics Letters, 62, 49-54. https://doi.org/10.1016/j.aml.2016.06.014 |
[5] | Wang, D.B. (2020) Least Energy Sign-Changing Solutions of Kirchhoff-Type Equation with Critical Growth. Journal of Mathematical Physics, 61, Article 011501. https://doi.org/10.1063/1.5074163 |
[6] | Xie, Q., Ma, S., Zhang, X. (2016) Bound State Solutions of Kirchhoff Type Problems with Critical Exponent. Journal of Differential Equations, 261, 890-924. https://doi.org/10.1016/j.jde.2016.03.028 |
[7] | 陈莉萍. 一类带变号权Kirchhoff方程解的存在性[J]. 应用数学进展, 2023, 12(4): 1567-1573. https://doi.org/10.12677/AAM.2023.124161 |
[8] | Willem, M. (1996) Minimax Theorems. Birkha¨user, Boston. https://doi.org/10.1007/978-1-4612-4146-1 |
[9] | Cerami, G. and Vaira, G. (2010) Positive Solutions for Some Non-Autonomous Schro¨dinger- Poisson Systems. Journal of Differential Equations, 248, 521-543. https://doi.org/10.1016/j.jde.2009.06.017 |
[10] | Yu, X.H. (2011) Existence of Solutions for Schro¨dinger-Poisson Systems with Sign-Changing Weight. Journal of Partial Differential Equations, 24, 180-194. https://doi.org/10.4208/jpde.v24.n2.7 |
[11] | 余晓辉. 一类薛定号-泊松方程解的存在性[J]. 应用数学, 2010, 23(3): 648-652. |
[12] | 孟娟霞. 一类分数阶薛定号-泊松系统非平凡解的存在性[J]. 应用数学进展, 2023, 12(4): 1704-1712. https://doi.org/10.12677/AAM.2023.124177 |
[13] | Laskin, N. (2000) Fractional Quantum Mechanics and L′evy Path Integrals. Physics Letters A, 268, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2 |
[14] | Laskin, N. (2002) Fractional Schro¨dinger Equation. Physical Review E, 66, 56-108. https://doi.org/10.1103/PhysRevE.66.056108 |
[15] | Bisci, G.M., R?adulescu, V.D. and Servadei, R. (2016) Variational Methods for Nonlocal Frac- tional Problems. Cambridge University Press, Cambridge. |