All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

水葫芦的高价值利用:TEMPO-超声耦合法高效提取纳米纤维素和纳米纤维晶
High-Value Utilization of Water Hyacinth: Efficient Extraction of Nanofibrillated Cellulose and Nanofiber Crystals through TEMPO-Ultrasound Coupling Method

DOI: 10.12677/ije.2024.132035, PP. 262-273

Keywords: TEMPO超声偶联,水葫芦的高值化利用,高效化提取
TEMPO Ultrasonic Coupling
, High-Value Utilization of Water Hyacinth, Efficient Extraction

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究提出了一种高值化利用深度处理后含有重金属的水葫芦的方法。即利用TEMPO-超声偶联法从水葫芦的茎中提取纳米纤维素晶体(CNC)和纳米纤维素(CNF)。这种方法通过将TEMPO介导氧化和超声相结合,温和地分解了水葫芦纤维束,促使纤维素纤维分解成更小的片段,从而提高了CNC和CNF的产率。研究结果表明,TEMPO超声联合法制备的CNC产率为63%,其羧基含量为1.27 mmol/g,CNF的产率为31%,羧基含量为1.21 mmol/g。扫描电子显微镜(SEM)和傅立叶红外变换(FTIR),分析证实了非纤维素杂质的逐步去除。CNC的平均长度为214.4 nm,平均直径为2.72 nm,长径比约为78.8,而CNF的平均长度为437.8 nm,平均直径为5.7 nm,长径比为76.8。较高的长径比意味着CNC和CNF具有更出色的力学性能。X射线衍射(XRD)分析显示,制备的CNC和CNF的结晶度分别为87.1%和81.2%,这表明它们具有较高的刚性。通过热重分析(TGA),还测定了纤维的热稳定性。这些结果表明,CNC和CNF在增强聚合物基体材料方面具有巨大的潜力。这一研究方法为深度处理后水葫芦实现高值化利用提供了可行性和潜力。
This study proposes a method for high-value utilization of water hyacinth containing heavy metals after deep treatment. That is, the TEMPO-ultrasonic coupling method was used to extract nanocellulose crystals (CNC) and nanocellulose (CNF) from the stems of water hyacinth. This method gently decomposes water hyacinth fiber bundles by combining TEMPO-mediated oxidation and ultrasound, promoting the decomposition of cellulose fibers into smaller fragments, thereby improving the yield of CNC and CNF. Research results show that the yield of CNC prepared by TEMPO ultrasound combined method is 63%, and its carboxyl content is 1.27 mmol/g. The yield of CNF is 31%, and its carboxyl content is 1.21 mmol/g. Scanning electron microscopy (SEM) and Fourier transform infrared transform (FTIR) analysis confirmed the progressive removal of non-cellulosic impurities. The average length of CNC is 214.4 nm, the average diameter is 2.72 nm, and the aspect ratio is about 78.8, while the average length of CNF is 437.8 nm, the average diameter is 5.7 nm, and the aspect ratio is 76.8. A higher aspect ratio means that CNC and CNF have better mechanical properties. X-ray diffraction (XRD) analysis shows that the crystallinity of the prepared CNC and CNF is 87.1% and 81.2%, respectively, which indicates that they have high rigidity. The thermal stability of the fibers was also determined by thermogravimetric analysis (TGA). These results demonstrate that CNCs and CNFs have great potential in reinforcing polymer matrix materials. This research method provides feasibility and potential for high-value utilization of water hyacinth after deep treatment.

References

[1]  John, M., H?kkinen, A. and Louhi-Kultanen, M. (2020) Purification Efficiency of Natural Freeze Crystallization for Urban Wastewaters. Cold Regions Science and Technology, 170, Article 102953.
https://doi.org/10.1016/j.coldregions.2019.102953
[2]  Li, F., He, X., Srishti, A., Song, S., Tan, H.T.W., Sweeney, D.J. and Wang, C.-H. (2021) Water Hyacinth for Energy and Environmental Applications: A Review. Bioresource Technology, 327, Article 124809.
https://doi.org/10.1016/j.biortech.2021.124809
[3]  Wang, X., Shi, L., Lan, C.Q., Delatolla, R. and Zhang, Z. (2013) Potential of Water Hyacinth for Phytoremediation in Low Temperature Environment. Environmental Progress & Sustainable Energy, 32, 976-981.
https://doi.org/10.1002/ep.11853
[4]  Qin, H., Diao, M., Zhang, Z., Visser, P.M., Zhang, Y., Wang, Y. and Yan, S. (2020) Responses of Phytoremediation in Urban Wastewater with Water Hyacinths to Extreme Precipitation. Journal of Environmental Management, 271, Article 110948.
https://doi.org/10.1016/j.jenvman.2020.110948
[5]  Singh, J., Kumar, P., Eid, E.M., Taher, M.A., El-Morsy, M.H.E., Osman, H.E.M. and Kumar, V. (2023) Phytoremediation of Nitrogen and Phosphorus Pollutants from Glass Industry Effluent by Using Water Hyacinth (Eichhornia crassipes (Mart.) Solms): Application of RSM and ANN Techniques for Experimental Optimization. Environmental Science and Pollution Research, 30, 20590-20600.
https://doi.org/10.1007/s11356-022-23601-9
[6]  Amalina, F., Razak, A.S.A., Krishnan, S., Zularisam, A.W. and Nasrullah, M. (2022) Water Hyacinth (Eichhornia crassipes) for Organic Contaminants Removal in Water—A Review. Journal of Hazardous Materials Advances, 7, Article 100092.
https://doi.org/10.1016/j.hazadv.2022.100092
[7]  Madikizela, L.M. (2021) Removal of Organic Pollutants in Water Using Water Hyacinth (Eichhornia crassipes). Journal of Environmental Management, 295, Article 113153.
https://doi.org/10.1016/j.jenvman.2021.113153
[8]  Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S.E., Md Din, M.F., Taib, S.M., Sairan, F.M. (2015) Perspectives of Phytoremediation Using Water Hyacinth for Removal of Heavy Metals, Organic and Inorganic Pollutants in Wastewater. Journal of Environmental Management, 163, 125-133.
https://doi.org/10.1016/j.jenvman.2015.08.018
[9]  Tirva, D., Tiwari, D., Chalotra, A. and Rawat, M. (2022) Bio Ethanol Production from Water Hyacinth. Materials Today: Proceedings, In Press.
https://doi.org/10.1016/j.matpr.2022.11.054
[10]  Zhu, Q., Gao, D., Yan, D., Tang, J., Cheng, X., El Sayed, I.E.T. and Xin, J. (2023) Highly Efficient One-Pot Bioethanol Production from Corn Stalk with Biocompatible Ionic Liquids. Bioresource Technology Reports, 22, Article 101461.
https://doi.org/10.1016/j.biteb.2023.101461
[11]  Abdel-Fattah, A.F. and Abdel-Naby, M.A. (2012) Pretreatment and Enzymic Saccharification of Water Hyacinth Cellulose. Carbohydrate Polymers, 87, 2109-2113.
https://doi.org/10.1016/j.carbpol.2011.10.033
[12]  Ajithram, A., Winowlin Jappes, J.T., Chithra, G.K. and Daphne, R. (2023) Serious Environmental Threat Water Hyacinth (Eichhornia crassipes) Plant Natural Fibress: Different Extraction Methods and Morphological Properties for Polymer Composite Applications. Materials Today: Proceedings, In Press.
https://doi.org/10.1016/j.matpr.2023.03.431
[13]  Cantero, D.A., Bermejo, M.D. and Cocero, M.J. (2015) Governing Chemistry of Cellulose Hydrolysis in Supercritical Water. ChemSusChem, 8, 1026-1033.
https://doi.org/10.1002/cssc.201403385
[14]  Seta, F.T., An, X., Liu, L., Zhang, H., Yang, J., Zhang, W. and Liu, H. (2020) Preparation and Characterization of High Yield Cellulose Nanocrystals (CNC) Derived from Ball Mill Pretreatment and Maleic Acid Hydrolysis. Carbohydrate Polymers, 234, Article 115942.
https://doi.org/10.1016/j.carbpol.2020.115942
[15]  Boruah, P., Gupta, R. and Katiyar, V. (2023) Fabrication of Cellulose Nanocrystal (CNC) from Waste Paper for Developing Antifouling and High-Performance Polyvinylidene Fluoride (PVDF) Membrane for Water Purification. Carbohydrate Polymer Technologies and Applications, 5, Article 100309.
https://doi.org/10.1016/j.carpta.2023.100309
[16]  Xi, C., Wang, R., Rao, P., Zhang, W., Yan, L., Li, G. and Zhou, X. (2020) The Fabrication and Arsenic Removal Performance of Cellulose Nanocrystal-Containing Absorbents Based on the “Bridge Joint” Effect of Iron Ions. Carbohydrate Polymers, 237, Article 116129.
https://doi.org/10.1016/j.carbpol.2020.116129
[17]  Fan, J., Xu, M., Xu, Y.-T., Hamad, W.Y., Meng, Z. and MacLachlan, M.J. (2023) A Visible Multi-Response Electrochemical Sensor Based on Cellulose Nanocrystals. Chemical Engineering Journal, 457, Article 141175.
https://doi.org/10.1016/j.cej.2022.141175
[18]  Klemm, D., Kramer, F., Moritz, S., Lindstr?m, T., Ankerfors, M., Gray, D. and Dorris, A. (2011) Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50, 5438-5466.
https://doi.org/10.1002/anie.201001273
[19]  Li, Z., Guan, J., Yan, C., Chen, N., Wang, C., Liu, T. and Shao, Z. (2023) Corn Straw Core/Cellulose Nanofibers Composite for Food Packaging: Improved Mechanical, Bacteria Blocking, Ultraviolet and Water Vapor Barrier Properties. Food Hydrocolloids, 143, Article 108884.
https://doi.org/10.1016/j.foodhyd.2023.108884
[20]  Costa, A.L.R., Gomes, A., Furtado, G.D.F., Tibolla, H., Menegalli, F.C. and Cunha, R.L. (2020) Modulating in vitro Digestibility of Pickering Emulsions Stabilized by Food-Grade Polysaccharides Particles. Carbohydrate Polymers, 227, Article 115344.
https://doi.org/10.1016/j.carbpol.2019.115344
[21]  Babaei-Ghazvini, A. and Acharya, B. (2023) Crosslinked Poly (Vinyl Alcohol) Composite Reinforced with Tunicate, Wood, and Hybrid Cellulose Nanocrystals: Comparative Physicochemical, Thermal, and Mechanical Properties. International Journal of Biological Macromolecules, 227, 1048-1058.
https://doi.org/10.1016/j.ijbiomac.2022.11.281
[22]  Babaei-Ghazvini, A., Cudmore, B., Dunlop, M.J., Acharya, B., Bissessur, R., Ahmed, M. and Whelan, W.M. (2020) Effect of Magnetic Field Alignment of Cellulose Nanocrystals in Starch Nanocomposites: Physicochemical and Mechanical Properties. Carbohydrate Polymers, 247, Article 116688.
https://doi.org/10.1016/j.carbpol.2020.116688
[23]  Meng, F., Wang, G., Du, X., Wang, Z., Xu, S. and Zhang, Y. (2019) Extraction and Characterization of Cellulose Nanofibers and Nanocrystals from Liquefied Banana Pseudo-Stem Residue. Composites Part B: Engineering, 160, 341-347.
https://doi.org/10.1016/j.compositesb.2018.08.048
[24]  Wei, L., Rui, W. and Shouxin, L. (2011) Nanocrystalline Cellulose Prepared from Softwood Kraft Pulp via Ultrasonic-Assisted Acid Hydrolysis. BioResources, 6, 4271-4281.
https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=69914688&lang=pt-br&site=ehost-live
https://doi.org/10.15376/biores.6.4.4271-4281
[25]  Xiao, S., Gao, R., Lu, Y., Li, J. and Sun, Q. (2015) Fabrication and Characterization of Nanofibrillated Cellulose and Its Aerogels from Natural Pine Needles. Carbohydrate Polymers, 119, 202-209.
https://doi.org/10.1016/j.carbpol.2014.11.041
[26]  Noremylia, M.B., Hassan, M.Z. and Ismail, Z. (2022) Recent Advancement in Isolation, Processing, Characterization and Applications of Emerging Nanocellulose: A Review. International Journal of Biological Macromolecules, 206, 954-976.
https://doi.org/10.1016/j.ijbiomac.2022.03.064
[27]  Jiang, H., Wu, S. and Zhou, J. (2023) Preparation and Modification of Nanocellulose and Its Application to Heavy Metal Adsorption: A Review. International Journal of Biological Macromolecules, 236, Article 123916.
https://doi.org/10.1016/j.ijbiomac.2023.123916
[28]  Indarti, E., Marwan, Rohaizu, R. and Wanrosli, W.D. (2019) Silylation of TEMPO Oxidized Nanocellulose from Oil Palm Empty Fruit Bunch by 3-Aminopropyltriethoxysilane. International Journal of Biological Macromolecules, 135, 106-112.
https://doi.org/10.1016/j.ijbiomac.2019.05.161
[29]  Saito, T., Kimura, S., Nishiyama, Y. and Isogai, A. (2007) Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules, 8, 2485-2491.
https://doi.org/10.1021/bm0703970
[30]  Hoo, D.Y., Low, Z.L., Low, D.Y.S., Tang, S.Y., Manickam, S., Tan, K.W. and Ban, Z.H. (2022) Ultrasonic Cavitation: An Effective Cleaner and Greener Intensification Technology in the Extraction and Surface Modification of Nanocellulose. Ultrasonics Sonochemistry, 90, Article 106176.
https://doi.org/10.1016/j.ultsonch.2022.106176
[31]  Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A. and Johnson, D.K. (2010) Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. 3, Article No. 10.
https://doi.org/10.1186/1754-6834-3-10
[32]  Pakutsah, K. and Aht-Ong, D. (2020) Facile Isolation of Cellulose Nanofibers from Water Hyacinth Using Water-Based Mechanical Defibrillation: Insights into Morphological, Physical, and Rheological Properties. International Journal of Biological Macromolecules, 145, 64-76.
https://doi.org/10.1016/j.ijbiomac.2019.12.172
[33]  Tanpichai, S., Biswas, S.K., Witayakran, S. and Yano, H. (2019) Water Hyacinth: A Sustainable Lignin-Poor Cellulose Source for the Production of Cellulose Nanofibers. ACS Sustainable Chemistry & Engineering, 7, 18884-18893.
https://doi.org/10.1021/acssuschemeng.9b04095
[34]  Ovalle-Serrano, S.A., Gómez, F.N., Blanco-Tirado, C. and Combariza, M.Y. (2018) Isolation and Characterization of Cellulose Nanofibrils from Colombian Fique decortication by-Products. Carbohydrate Polymers, 189, 169-177.
https://doi.org/10.1016/j.carbpol.2018.02.031
[35]  An, X., Wen, Y., Cheng, D., Zhu, X. and Ni, Y. (2016) Preparation of Cellulose Nano-Crystals through a Sequential Process of Cellulase Pretreatment and Acid Hydrolysis. Cellulose, 23, 2409-2420.
https://doi.org/10.1007/s10570-016-0964-4
[36]  Phanthong, P., Guan, G., Ma, Y., Hao, X. and Abudula, A. (2016) Effect of Ball Milling on the Production of Nanocellulose Using Mild Acid Hydrolysis Method. Journal of the Taiwan Institute of Chemical Engineers, 60, 617-622.
https://doi.org/10.1016/j.jtice.2015.11.001
[37]  Rohaizu, R. and Wanrosli, W.D. (2017) Sono-Assisted TEMPO Oxidation of Oil Palm Lignocellulosic Biomass for Isolation of Nanocrystalline Cellulose. Ultrasonics Sonochemistry, 34, 631-639.
https://doi.org/10.1016/j.ultsonch.2016.06.040
[38]  Kouadri, I. and Satha, H. (2018) Extraction and Characterization of Cellulose and Cellulose Nanofibers from Citrullus Colocynthis Seeds. Industrial Crops and Products, 124, 787-796.
https://doi.org/10.1016/j.indcrop.2018.08.051
[39]  Cheng, Q., Wang, S., Rials, T.G. and Lee, S.-H. (2007) Physical and Mechanical Properties of Polyvinyl Alcohol and Polypropylene Composite Materials Reinforced with Fibril Aggregates Isolated from Regenerated Cellulose Fibers. Cellulose, 14, 593-602.
https://doi.org/10.1007/s10570-007-9141-0
[40]  Bhatnagar, A. and Sain, M. (2005) Processing of Cellulose Nanofiber-Reinforced Composites. Journal of Reinforced Plastics and Composites, 24, 1259-1268.
https://doi.org/10.1177/0731684405049864
[41]  Fukuzumi, H., Saito, T., Okita, Y. and Isogai, A. (2010) Thermal Stabilization of TEMPO-Oxidized Cellulose. Polymer Degradation and Stability, 95, 1502-1508.
https://doi.org/10.1016/j.polymdegradstab.2010.06.015
[42]  Shen, D.K. and Gu, S. (2010) Corrigendum to “The Mechanism for Thermal Decomposition of Cellulose and Its Main Products” [Biores. Technol. 100 (2009) 6496–6504]. Bioresource Technology, 101, 6879.
https://doi.org/10.1016/j.biortech.2010.04.002
[43]  Cao, X., Ding, B., Yu, J. and Al-Deyab, S.S. (2012) Cellulose Nanowhiskers Extracted from TEMPO-Oxidized Jute Fibers. Carbohydrate Polymers, 90, 1075-1080.
https://doi.org/10.1016/j.carbpol.2012.06.046
[44]  Zhang, Y., Zhang, Y., Xu, W., Wu, H., Shao, Y., Han, X. And Li, Z. (2023) Preparation Methods of Cellulose Nanocrystal and Its Application in Treatment of Environmental Pollution: A Mini-Review. Colloid and Interface Science Communications, 53, Article 100707.
https://doi.org/10.1016/j.colcom.2023.100707

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413