|
基于多目标粒子群算法滑靴结构优化设计和仿真分析
|
Abstract:
液压变压器滑靴副底部结构,对于液压变压器总体效率的提高有着至关重要的作用,面对液压变压器复杂的运行工况,对滑靴副底部结构使用多目标粒子群优化算法,对滑靴副底部参数进行优化设计分析。首先通过建立液压变压器滑靴副复杂的受力分析图,建立滑靴副动力学方程,然后构建关于液压变压器的AMESim滑靴副泄漏和摩擦模型,随后建立多目标粒子群优化算法模型,以滑靴副泄漏量与摩擦转矩最小作为优化目标,随后对于滑靴底部参数进行寻优,最后通过优化算法得到优化后的滑靴底部参数就,通过模型仿真实验得到结果,优化后的滑靴底部结构参数对于降低滑靴副的泄漏量与摩擦转矩损失有较大的提高,极大的提高了滑靴副的效率。
The bottom structure of the slipper pair in a hydraulic transformer plays a crucial role in improving the overall efficiency of the hydraulic transformer. Faced with the complex operating conditions of the hydraulic transformer, a multi-objective particle swarm optimization algorithm is used to optimize and design the bottom structure of the slipper pair. Firstly, a complex force analysis diagram of the slipper pair in the hydraulic transformer is established, and the dynamic equations of the slipper pair are derived. Then, the AMESim leakage and friction models of the slipper pair in the hydraulic transformer are constructed. Subsequently, a multi-objective particle swarm optimization algorithm model is established, with the minimum leakage and friction torque of the slipper pair as the optimization objectives. The bottom parameters of the slipper pair are optimized, and the optimized bottom parameters of the slipper pair are obtained through the optimization algorithm. Finally, the results are obtained through model simulation experiments. The optimized bottom structure parameters of the slipper pair significantly reduce the leakage and friction torque losses of the slipper pair, greatly improving the efficiency of the slipper pair.
[1] | Qian, Z., Huang, P. and When, S. (1996) Abrasive Wear Model for Lubricated Sliding Contacts. Wear, 196, 72-76. https://doi.org/10.1016/0043-1648(95)06851-1 |
[2] | Chang, L. (1995) A Deterministic Model for Line-Contact Partial Elastohydrodynamic Lubrication. Tribology International, 28, 75-84. https://doi.org/10.1016/0301-679X(95)92697-4 |
[3] | Bergada, J., Davies, D. and Kumar, S. (2012) The Effect of Oil Pressure and Temperature on Barrel Film Thickness and Barrel Dynamics of an Axial Piston Pump. Meccanica, 47, 639-654. https://doi.org/10.1007/s11012-011-9472-7 |
[4] | Xu, B., Jiang, J. and Yang, H. (2012) Investigation on Structural Optimization of Anti-Overturning Slipper of Axial Piston Pump .Science China Technological Sciences, 55, 3010-3018. https://doi.org/10.1007/s11431-012-4955-x |
[5] | 张斌. 轴向柱塞泵的虚拟样机及油膜压力特性研究[D]:[博士学位论文]. 杭州: 浙江大学, 2009. |
[6] | 李迎兵. 轴向柱塞泵滑靴副油膜特性研究[D]:[硕士学位论文]. 杭州: 浙江大学, 2011. |
[7] | Pelosi, M. and Ivantysynova, M. (2013) The Impact of Axial Piston Machines Mechanical Parts Constraint Conditions on The Thermo-Elastohydrodynamic Lubrication Analysis of The Fluid Film Interfaces. International Journal of Fluid Power, 14, 35-51. https://doi.org/10.1080/14399776.2013.10801412 |
[8] | 唐群国, 李壮云, 康保江. 水压轴向柱塞泵滑靴的倾侧问题及平衡设计[J]. 机床与液压, 2002(2): 17-44. |
[9] | Xu, B., Wang, Q., Zhang, J. (2015) Effect of Case Drain Pressure on Slipper/Swashplate Pair within Axial Piston Pump. Journal of Zhejiang University Science A, 16, 1001-1014. https://doi.org/10.1631/jzus.A1500182 |
[10] | 徐兵, 李迎兵, 张斌, 等. 轴向柱塞泵滑靴副倾覆现象数值分析[J]. 机械工程学报, 2010, 46(20): 161-168. |
[11] | 徐兵, 潮群, 张军辉, 等. 基于平衡系数的滑靴优化模型[J]. 浙江大学学报(工学版), 2015, 49(6): 1009-1014. |
[12] | 汪泽波. 轴向柱塞泵滑靴副微运动姿态及润滑油膜的特性研究[D]:[博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2021. |
[13] | 段珊珊. 轴向柱塞泵滑靴及其偶件的应力特性仿真分析[D]:[硕士学位论文]. 太原: 太原理工大学, 2018. |