|
泊松方程第一边值问题的谱配置方法
|
Abstract:
以Legendre-Gauss-Lobatto节点为配置点,利用Legendre多项式建立谱配置格式求解具有第一边值问题的泊松方程,给出算法格式,通过数值运算表明算法格式的有效性和高精度。
Using Legendre-Gauss-Lobatto nodes as configuration points, a spectral collocation scheme is established using Legendre polynomials to solve Poisson’s equation with first boundary value problems. The algorithm format is given, and the effectiveness and high accuracy of the algorithm format are demonstrated through numerical operations.
[1] | 卓晓华. 二维Poisson方程有限元解法[J]. 卫生职业教育, 2004(22): 76-77. |
[2] | 杜书德. 基于有限差分法的泊松方程第一类边值问题求解[J]. 科技通报, 2018, 34(4): 21-24. |
[3] | 马亚楠, 王天军, 李冰冰. Korteweg-de Vries方程的时空谱配置方法[J]. 数值计算与计算机应用, 2021, 42(4): 351-360. |
[4] | Orszag, S.A. (1972) Comparison of Pseudospectral and Spectral Approximation. Studies in Applied Mathematics, 51, 253-259. https://doi.org/10.1002/sapm1972513253 |
[5] | Kreiss, H.O. and Oliger, J. (1972) Comparison of Accurate Methods for the Integration of Hyperbolic Equations. Tellus, 24, 199-215. https://doi.org/10.3402/tellusa.v24i3.10634 |
[6] | 王亚洲, 秦国良, 和文强, 包振忠. 时空耦合谱元方法求解一维Burgers方程[J]. 西安交通大学学报, 2017, 51(1): 45-50. |
[7] | Shen, J., Tang, T. and Wang, L.-L. (2011) Spectral Methods: Algorithms, Analysis and Applications. In Springer Series in Computational Mathematics (Volume 41), Springer, Berlin, 103-105. https://doi.org/10.1007/978-3-540-71041-7 |
[8] | 王天军, 殷政伟. Legendre-Gauss-Lobatto节点的一个注记[J]. 河南科技大学学报(自然科学版), 2012, 33(1): 71-74. |
[9] | 高文, 胡晓, 吕军亮, 等. 泊松方程第一类边值问题四阶紧差分格式数值实现[J]. 高等学校计算数学学报, 2017, 39(1): 1-16. |
[10] | Canuto, C. and Quarteroni, A. (1982) Approximation Results for Orthogonal Polynomials in Sobolev Spaces. Mathematics of Computation, 38, 67-86. https://doi.org/10.1090/S0025-5718-1982-0637287-3 |
[11] | Canuto, C. and Quarteroni, A. (1982) Error Estimates for Spectral and Pseudo-Spectral Approximations of Hyperbolic Equations. SIAM Journal on Numerical Analysis, 19, 629-642. https://doi.org/10.1137/0719044 |