|
一类带变号权 Kirchhoff-Poisson 系统非平凡解的存在性
|
Abstract:
应用山路引理, 本文研究 Kirchhoff-Poisson 系统,非平凡解的存在性, 其中 a, b > 0, 3 < p < 5, P (x) ∈ C(R3, R) 且 lim▕x▕→∞P (x) = P∞< 0 ,K(x) ∈ C(R3, R) 且 K(x) ∈ L2(R3).
By using mountain pass theorem, we are concerned with the existence of nontrivial solution of Kirchhoff-Poisson system in this paper: ,where a, b > 0, 3 < p < 5, P (x) ∈ C(R3) is a sign-changing function with lim▕x▕→∞P (x) = P∞< 0 ,K(x) ∈ C(R3, R) 且 K(x) ∈ L2(R3).
[1] | Lions, J.L. (1978) On Some Questions in Boundary Value Problems of Mathematical Physics. North-Holland Mathematics Studies, 30, 284-346. https://doi.org/10.1016/S0304-0208(08)70870-3 |
[2] | Alves, C.O., Corr′ea, F.J. and Ma, T. (2005) Positive Solutions for a Quasilinear Elliptic Equation of Kirchhoff Type. Computers & Mathematics with Applications, 49, 85-93. https://doi.org/10.1016/j.camwa.2005.01.008 |
[3] | Deng, Y.B., Peng, S.J. and Shuai, W. (2015) Existence and Asymptotic Behavior of Nodal Solutions for the Kirchhoff-Type Problems in R3. Journal of Functional Analysis, 269, 3500- 3527. https://doi.org/10.1016/j.jfa.2015.09.012 |
[4] | Tang, X.H. and Cheng, B.T. (2016) Ground State Sign-Changing Solutions for Kirchhoff Type Problems in Bounded Domains. Journal of Differential Equations, 261, 2384-2402. https://doi.org/10.1016/j.jde.2016.04.032 |
[5] | Li, G.B. and Ye, H.Y. (2014) Existence of Positive Ground State Solutions for the Nonlinear Kirchhoff Type Equations in R3. Journal of Differential Equations, 257, 566-600. https://doi.org/10.1016/j.jde.2014.04.011 |
[6] | Xie, W. and Chen, H. (2019) Multiple Positive Solutions for the Critical Kirchhoff Type Problems Involving Sign-Changing Weight Functions. Journal of Mathematical Analysis and Applications, 479, 135-161. https://doi.org/10.1016/j.jmaa.2019.06.020 |
[7] | Xu, X., Qin, B. and Chen, S. (2020) Bifurcation Results for a Kirchhoff Type Problem Involving Sign-Changing Weight Functions. Nonlinear Analysis, 195, Article 111718. https://doi.org/10.1016/j.na.2019.111718 |
[8] | 余晓辉. 一类薛定号-泊松方程解的存在性[J]. 应用数学, 2010, 23(3): 648-652. |
[9] | 陈莉萍. 一类带变号权Kirchhoff方程解的存在性[J]. 应用数学进展, 2023, 12(4): 1567-1573. https://doi.org/10.12677/AAM.2023.124161 |
[10] | Willem, M. (1996) Minimax Theorems. Birkha¨user, Bosten. |
[11] | 宣本金. 变分法理论与应用[M]. 合肥: 中国科学技术大学出版社, 2006. |