|
Vocational Education 2024
MOOC+SPOC混合式教学模式下的学习者画像研究
|
Abstract:
在个性化学习理论指导下,本文结合已有学习者特征分析体系构建MOOC+SPOC混合式教学模式下的学习者特征分析模型,通过采集学习者全过程学习数据,进行数据统计与分析,从学习者基本信息、学习行为、学习结果三个维度进行学习者整体画像,通过K-means聚类分析方法进行学习者分类画像,将学习者分成潜力型、进取型、自主型三类,为混合式教学下的精准个性化学习提供参考。
Under the guidance of personalized learning theory, the learner feature analysis model under the MOOC+SPOC mixed teaching mode is constructed on the existing learner feature analysis system. By collecting the whole process of learners ‘learning data, data statistics and analysis are carried out, and the overall portrait of learners is made from three dimensions of learners’ basic information, learning behavior and learning results. Learners are classified into three categories: potential learners, aggressive learners and autonomous learners by K-means cluster analysis method. It provides a reference for accurate and personalized learning under mixed teaching.
[1] | 李广, 姜英杰. 个性化学习的理论建构与特征分析[J]. 东北师大学报, 2005(3): 152-156. |
[2] | 周宇, 曹英楠, 王永超. 面向大数据的数据处理与分析算法综述[J]. 南京航空航天大学学报, 2021, 53(5): 664-676. |
[3] | 陈雯雯, 夏一超. 教育数据挖掘: 大数据时代的教育变革[J]. 中国教育信息化, 2017(7): 37-44. |
[4] | 逐步回归分析[EB/OL]. https://blog.csdn.net/zhongkeyuanchongqing/article/details/116885222, 2021-05-25. |
[5] | 杨剑锋, 乔佩蕊, 李永梅, 王宁. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6): 36-40. |
[6] | 杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23): 7-14 63. |
[7] | 王梦倩, 范逸洲, 郭文革, 汪琼. MOOC学习者特征聚类分析研究综述[J]. 中国远程教育, 2018(7): 9-19 79. |