All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

二维材料MXene的制备方法、性能与应用探究
Research on the Preparation Method and Application Performance of Two-Dimensional Material MXene

DOI: 10.12677/nat.2024.1412003, PP. 23-36

Keywords: MXene,制备方法,应用性能
MXene
, Preparation Method, Application Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

MXene是一种新型的二维层状纳米材料,具有独特的多层结构,出色的导电性,力学性和表面功能化能力,使其在广泛的应用中具有高度普适性。本文综述了MXene的“自下而上”和“自上而下”制备方法,对比了各种方法的优缺点。分析了MXene材料的特性及对应的应用场景,对MXene在化学、生物和多功能等传感器中研究进行了总结。
MXene is a novel two-dimensional layered nanomaterial that has shown extensive application prospects in various fields due to its unique structure and physicochemical properties. This article provides an overview of the “bottom-up” and “top-down” preparation methods for MXene, and compares the advantages and disadvantages of each method. Analyzed the characteristics and corresponding application scenarios of MXene materials, and summarized the research on MXene in chemical, biological, and multifunctional sensors.

References

[1]  徐斌. MXene材料制备、性质与储能应用[M]. 北京: 科学出版社, 2022.
[2]  Lim, K.R.G., Shekhirev, M., Wyatt, B.C., et al. (2022) Fundamentals of MXene Synthesis. Nature Synthesis, 1, 601-614.
https://doi.org/10.1038/s44160-022-00104-6
[3]  吴晓娜, 汪宜宇, 赵凯. MXene基复合水凝胶在修复感染创面中的研究进展[J/OL]. 复合材料学报, 2024: 1-10.
https://doi.org/10.13801/j.cnki.fhclxb.20231214.001
[4]  朱言, 魏子婧, 林乐怡, 等. MXene/CNTs复合材料的制备及应用进展[J]. 化工新型材料, 2023, 51(S2): 101-106.
[5]  李国辉, 张丹丹, 伍远辉, 等. MXenes的性能及应用研究进展[J/OL]. 化工新型材料, 2023: 1-9.
http://kns.cnki.net/kcms/detail/11.2357.tq.20231209.1403.002.html, 2024-04-07.
[6]  门海蛟, 宋健尧, 黄秉经, 等. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 45-67.
[7]  杜春保, 朱亚楠, 薛丹, 等. 基于MXene/丝素蛋白纳米复合材料的仿生促动器在实验教学中的设计与探索[J]. 当代化工研究, 2023(19): 176-178.
[8]  Hantanasirisakul, K., Zhao, M.Q., Urbankowski, P., et al. (2016) Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. Advanced Electronic Materials, 2, Article ID: 1600050.
https://doi.org/10.1002/aelm.201600050
[9]  Tan, T., Jiang, X., Wang, C., et al. (2020) 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. Advanced Science, 7, Article ID: 2000058.
https://doi.org/10.1002/advs.202000058
[10]  Li, X.-P., et al. (2019) Highly Sensitive, Reliable and Flexible Piezoresistive Pressure Sensors Featuring Polyurethane Sponge Coated with MXene Sheets. Journal of Colloid & Interface Science, 542, 54-62.
[11]  (2022) Study Results from Zhengzhou University in the Area of Electronics Reported (Multifunctional MXene/Cnts Based Flexible Electronic Textile with Excellent Strain Sensing, Electromagnetic Interference Shielding and Joule Heating Performances). Electronics Newsweekly.
[12]  Kong, D., El-Bahy, Z.M., Algadi, H., et al. (2022) Highly Sensitive Strain Sensors with Wide Operation Range from Strong MXene-Composited Polyvinyl Alcohol/Sodium Carboxymethylcellulose Double Network Hydrogel. Advanced Composites and Hybrid Materials, 5, 1976-1987.
https://doi.org/10.1007/s42114-022-00531-1
[13]  Lu, Y., Qu, X., Zhao, W., et al. (2020) Highly Stretchable, Elastic, and Sensitive MXene-Based Hydrogel for Flexible Strain and Pressure Sensors. Research, 2020(11), 1-13.
https://doi.org/10.34133/2020/2038560
[14]  Fan, K., Li, K., Han, L., et al. (2023) Multifunctional Double-Network Ti3C2Tx MXene Composite Hydrogels for Strain Sensors with Effective Electromagnetic Interference and UV Shielding Properties. Polymer: The International Journal for the Science and Technology of Polymers, 273, Article ID: 125865.
https://doi.org/10.1016/j.polymer.2023.125865
[15]  Li, M., Wang, L., Liu, R., et al. (2021) A Highly Integrated Sensing Paper for Wearable Electrochemical Sweat Analysis. Biosensors and Bioelectronics, 174, Article ID: 112828.
https://doi.org/10.1016/j.bios.2020.112828
[16]  Naguib, M., Kurtoglu, M., Presser, V., et al. (2011) Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials, 23, 4248-4253.
https://doi.org/10.1002/adma.201102306
[17]  Naguib, M., Mashtalir, O., Carle, J., et al. (2012) Two-Dimensional Transition Metal Carbides. ACS Nano, 6, 1322-1331.
https://doi.org/10.1021/nn204153h
[18]  Han, M., Shuck, C., Rakhmanov, R., et al. (2020) Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. ACS Nano, 14, 5008-5016.
https://doi.org/10.1021/acsnano.0c01312
[19]  Kumar, S., Kumari, N. and Seo, Y. (2024) MXenes: Versatile 2D Materials with Tailored Surface Chemistry and Diverse Applications. Journal of Energy Chemistry, 90, 253-293.
https://doi.org/10.1016/j.jechem.2023.11.031
[20]  Li, Y., Xie, J., Wang, R., et al. (2024) Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti3C2Tx MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs. Nano-Micro Letters, 16, 400-420.
https://doi.org/10.1007/s40820-023-01265-5
[21]  Kang, S.M., Yu, Y., Park, R., et al. (2024) Highly Aligned Ternary Nanofiber Matrices Loaded with MXene Expedite Regeneration of Volumetric Muscle Loss. Nano-Micro Letters, 16, 275-298.
https://doi.org/10.1007/s40820-023-01293-1
[22]  Li, Y., Zhu, Y., Vallem, S., et al. (2024) Flame-Retardant Ammonium Polyphosphate/MXene Decorated Carbon Foam Materials as Polysulfide Traps for Fire-Safe and Stable Lithium-Sulfur Batteries. Journal of Energy Chemistry, 89, 313-323.
https://doi.org/10.1016/j.jechem.2023.10.029
[23]  Zhao, W., Shi, X., Liu, B., et al. (2024) The Design and Engineering Strategies of Metal Tellurides for Advanced Metal-Ion Batteries. Journal of Energy Chemistry, 89, 579-598.
https://doi.org/10.1016/j.jechem.2023.09.044
[24]  Li, Z., Chen, X., Zhang, R., et al. (2024) Advanced Cellulose-Based Materials toward Stabilizing Zinc Anodes. Science China Chemistry, 1-20.
http://kns.cnki.net/kcms/detail/11.5839.o6.20240123.1627.004.html
[25]  Wang, D., Zhou, C., Filatov, A.S., et al. (2023) Direct Synthesis and Chemical Vapor Deposition of 2D Carbide and Nitride MXenes. Science, 379, 1242-1247.
https://doi.org/10.1126/science.add9204
[26]  Vacík, J., et al. (2020) Ion Sputtering for Preparation of Thin MAX and MXene Phases. Radiation Effects and Defects in Solids, 175, 177-189.
https://doi.org/10.1080/10420150.2020.1718142
[27]  Zhu, C., Hao, Y., Wu, H., et al. (2024) Self-Assembly of Binderless MXene Aerogel for Multiple-Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding. Nano-Micro Letters, 16, 373-388.
https://doi.org/10.1007/s40820-023-01288-y
[28]  Fan, W., Wang, Q., Rong, K., et al. (2024) MXene Enhanced 3D Needled Waste Denim Felt for High-Performance Flexible Supercapacitors. Nano-Micro Letters, 16, 389-400.
https://doi.org/10.1007/s40820-023-01226-y
[29]  Sunderiya, S., Suragtkhuu, S., Purevdorj, S., et al. (2024) Understanding the Oxidation Chemistry of Ti3C2Tx (MXene) Sheets and Their Catalytic Performances. Journal of Energy Chemistry, 88, 437-445.
https://doi.org/10.1016/j.jechem.2023.09.037
[30]  Lian, X., Shi, Y., Shen, X., et al. (2024) Design of High Performance MXene/Oxide Structure Memristors for Image Recognition Applications. Chinese Journal of Electronics, 1-10.
http://kns.cnki.net/kcms/detail/10.1284.tn.20231220.1238.022.html
[31]  Ya, Z., Wang, Q., Cai, J., et al. (2024) An Ultra-Porous g-C3N4 Micro-Tube Coupled with MXene (Ti3C2Tx) Nanosheets for Efficient Degradation of Organics under Natural Sunlight. Journal of Environmental Sciences, 137, 258-270.
https://doi.org/10.1016/j.jes.2022.10.049
[32]  Qi, Z., Zhang, T., Zhang, X., et al. (2023) MXene-Based Flexible Pressure Sensor with Piezoresistive Properties Significantly Enhanced by Atomic Layer Infiltration. Nano Materials Science, 5, 439-446.
https://doi.org/10.1016/j.nanoms.2022.10.003
[33]  Li, H., Wen, J., Ding, S., et al. (2023) Synergistic Coupling of 0D-2D Heterostructure from ZnO and Ti3C2Tx MXene-Derived TiO2 for Boosted NO2 Detection at Room Temperature. Nano Materials Science, 5, 421-428.
https://doi.org/10.1016/j.nanoms.2023.02.001
[34]  Su, T., Meng, J., Xiao, Y., et al. (2023) In Situ Growth of Cobalt on Ultrathin Ti3C2Tx as an Efficient Co-Catalyst of g-C3N4 for Enhanced Photocatalytic CO2 Reduction. Chinese Journal of Chemical Engineering, 64, 76-86.
https://doi.org/10.1016/j.cjche.2023.06.018
[35]  Wang, X., Zhang, R., Ma, C., et al. (2023) Surface Hydrophobic Modification of MXene to Promote the Electrochemical Conversion of N2 to NH3. Journal of Energy Chemistry, 87, 439-449.
https://doi.org/10.1016/j.jechem.2023.08.043
[36]  Guo, D., Pan, Q., Vietor, T., et al. (2023) MXene Based Non-Noble Metal Catalyst for Overall Water Splitting in Alkaline Conditions. Journal of Energy Chemistry, 87, 518-539.
https://doi.org/10.1016/j.jechem.2023.08.049
[37]  朱言, 魏子婧, 林乐怡, 等. MXene/CNTs复合材料的制备及应用进展[J]. 化工新型材料, 2023, 51(S2): 101-106.
https://doi.org/10.19817/j.cnki.issn1006-3536.2023.s2.021
[38]  Qiao, W., Zhou, L., Zhao, Z., et al. (2023) MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime. Nano-Micro Letters, 15, 44-56.
https://doi.org/10.1007/s40820-023-01198-z
[39]  Pan, L., Hu, R., Zhang, Y., et al. (2023) Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti3C2Tx MXene. Nano-Micro Letters, 15, 135-148.
https://doi.org/10.1007/s40820-023-01202-6
[40]  Liu, Y., Wang, Y., Wu, N., et al. (2023) Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding. Nano-Micro Letters, 15, 427-456.
https://doi.org/10.1007/s40820-023-01203-5
[41]  Wang, Y., Chen, N., Zhou, B., et al. (2023) NH3-Induced in Situ Etching Strategy Derived 3D-Interconnected Porous MXene/Carbon Dots Films for High Performance Flexible Supercapacitors. Nano-Micro Letters, 15, 279-290.
https://doi.org/10.1007/s40820-023-01204-4
[42]  He, H., Qin, Y., Zhu, Z., et al. (2023) Temperature-Arousing Self-Powered Fire Warning E-Textile Based on P-N Segment Coaxial Aerogel Fibers for Active Fire Protection in Firefighting Clothing. Nano-Micro Letters, 15, 149-168.
https://doi.org/10.1007/s40820-023-01200-8
[43]  尹建宇, 刘逆霜, 高义华. MXene在压力传感中的研究进展[J/OL]. 无机材料学报, 2024(2): 179-185.
http://kns.cnki.net/kcms/detail/31.1363.tq.20240220.2300.016.html, 2024-03-01.
[44]  Venkateswarlu, S., Vallem, S., Umer, M., et al. (2023) Recent Progress on MOF/MXene Nanoarchitectures: A New Era in Coordination Chemistry for Energy Storage and Conversion. Journal of Energy Chemistry, 86, 409-436.
https://doi.org/10.1016/j.jechem.2023.07.044
[45]  Shen, G.Z., et al. (2023) Highly Stable Capacitive Tactile Sensors with Tunable Sensitivity Facilitated by Electrostatic Interaction of Layered Double Hydroxide, MXene, and Ag NWs. Science China (Technological Sciences), 66, 3287-3297.
https://doi.org/10.1007/s11431-022-2408-3
[46]  Wang, Y., Wang, Y., Dong, Y., et al. (2023) 2D Nb2CTx MXene/MoS2 Heterostructure Construction for Nonlinear Optical Absorption Modulation. Opto-Electronic Advances, 6, 9-20.
https://doi.org/10.29026/oea.2023.220162
[47]  Li, X. and Luo, H. (2023) Maximizing Terahertz Energy Absorption with MXene Absorber. Nano-Micro Letters, 15, 144-147.
https://doi.org/10.1007/s40820-023-01167-6
[48]  Lu, X., Xie, D., Zhu, K., et al. (2023) Swift Assembly of Adaptive Thermocell Arrays for Device-Level Healable and Energy-Autonomous Motion Sensors. Nano-Micro Letters, 15, 112-126.
https://doi.org/10.1007/s40820-023-01170-x
[49]  Wu, F., Hu, P., Hu, F., et al. (2023) Multifunctional MXene/C Aerogels for Enhanced Microwave Absorption and Thermal Insulation. Nano-Micro Letters, 15, 82-97.
https://doi.org/10.1007/s40820-023-01158-7
[50]  Tian, S., Wang, M., Fornasiero, P., et al. (2023) Recent Advances in MXenes-Based Glucose Biosensors. Chinese Chemical Letters, 34, 18-27.
https://doi.org/10.1016/j.cclet.2023.108241
[51]  Ma, W., Qiu, Z., Li, J., et al. (2023) Interfacial Electronic Coupling of V-Doped Co2P with High-Entropy MXene Reduces Kinetic Energy Barrier for Efficient Overall Water Splitting. Journal of Energy Chemistry, 85, 301-309.
https://doi.org/10.1016/j.jechem.2023.06.017
[52]  Liu, J., Ma, L., Li, S., et al. (2023) Three-Dimensional Architecture Using Hollow Cu/C Nanofiber Interpenetrated with MXenes for High-Rate Lithium-Ion Batteries. Rare Metals, 42, 3378-3386.
https://doi.org/10.1007/s12598-023-02372-3
[53]  Wang, J., Suo, J., Song, Z., et al. (2023) Nanomaterial-Based Flexible Sensors for Metaverse and Virtual Reality Applications. International Journal of Extreme Manufacturing, 5, 413-445.
https://doi.org/10.1088/2631-7990/acded1
[54]  Hu, P., Chai, R., Wang, P., et al. (2023) Supercapacitive Properties of MnNiSx@ Ti3C2Tx MXene Positive Electrode Assisted by Functionalized Ionic Liquid. Chinese Journal of Chemical Engineering, 61, 102-109.
https://doi.org/10.1016/j.cjche.2023.03.013
[55]  Nikkhah, A., Nikkhah, H., Langari, H., et al. (2023) MXene: From Synthesis to Environment Remediation. Chinese Journal of Chemical Engineering, 61, 260-280.
https://doi.org/10.1016/j.cjche.2023.02.028
[56]  Prajapati, K.A. and Bhatnagar, A. (2023) A Review on Anode Materials for Lithium/Sodium-Ion Batteries. Journal of Energy Chemistry, 83, 509-540.
https://doi.org/10.1016/j.jechem.2023.04.043
[57]  Liu, S., Chen, M., Xie, Y., et al. (2023) Nb2CTx MXene Boosting PEO Polymer Electrolyte for All-Solid-State Li-S Batteries: Two Birds with One Stone Strategy to Enhance Li~ Conductivity and Polysulfide Adsorptivity. Rare Metals, 42, 2562-2576.
https://doi.org/10.1007/s12598-022-02260-2
[58]  Yang, W., Ni, Z., You, D., et al. (2023) Multifunctional Sulfur-Immobilizing GO/MXene Aerogels for Highly-Stable and Long-Cycle-Life Lithium-Sulfur Batteries. Rare Metals, 42, 2577-2591.
https://doi.org/10.1007/s12598-023-02272-6
[59]  Yang, C., Zhang, D., Wang, D., et al. (2023) In Situ Polymerized MXene/Polypyrrole/Hydroxyethyl Cellulose-Based Flexible Strain Sensor Enabled by Machine Learning for Handwriting Recognition. ACS Applied Materials & Interfaces, 15, 5811-5821.
https://doi.org/10.1021/acsami.2c18989
[60]  Liu, M., Wang, Z., Song, P., et al. (2021) Flexible MXene/RGO/CuO Hybrid Aerogels for High Performance Acetone Sensing at Room Temperature. Sensors and Actuators B: Chemical, 340, Article ID: 129946.
https://doi.org/10.1016/j.snb.2021.129946
[61]  Le, V.T., Vasseghian, Y., Doan, V.D., et al. (2022) Flexible and High-Sensitivity Sensor Based on Ti3C2-MoS2 MXene Composite for the Detection of Toxic Gases. Chemosphere, 291, Article ID: 133025.
https://doi.org/10.1016/j.chemosphere.2021.133025
[62]  Zeng, R., Wang, W., Chen, M., et al. (2020) CRISPR-Cas12a-Driven MXene-PEDOT: PSS Piezoresistive Wireless Biosensor. Nano Energy, 82, Article ID: 105711.
https://doi.org/10.1016/j.nanoen.2020.105711
[63]  Chao, M., He, L., Gong, M., et al. (2021) Breathable Ti3C2Tx MXene/Protein Nanocomposites for Ultrasensitive Medical Pressure Sensor with Degradability in Solvents. ACS Nano, 15, 9746-9758.
https://doi.org/10.1021/acsnano.1c00472
[64]  Gao, Y., Yan, C., Huang, H., et al. (2020) Microchannel-Confined MXene Based Flexible Piezoresistive Multifunctional Micro-Force Sensor. Advanced Functional Materials, 30, Article ID: 1909603.
https://doi.org/10.1002/adfm.201909603
[65]  Liu, L.X., Chen, W., Zhang, H.B., et al. (2019) Flexible and Multifunctional Silk Textiles with Biomimetic Leaf-Like MXene/Silver Nanowire Nanostructures for Electromagnetic Intearference Shielding, Humidity Monitoring, and Self-Derived Hydrophobicity. Advanced Functional Materials, 29, Article ID: 1905197.
https://doi.org/10.1002/adfm.201905197
[66]  Liu, H., Chen, X., Zheng, Y., et al. (2021) Lightweight, Superelastic, and Hydrophobic Polyimide Nanofiber/MXene Composite Aerogel for Wearable Piezoresistive Sensor and Oil/Water Separation Applications. Advanced Functional Materials, 31, Article ID: 2008006.
https://doi.org/10.1002/adfm.202008006

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413