全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

椭圆链式KP系统的可积性分析
Integrability Analysis of Elliptical Chain KP System

DOI: 10.12677/pm.2024.145179, PP. 219-225

Keywords: 椭圆链式KP系统,Lax组,柯西矩阵法
Elliptic Lattice KP System
, Lax Triplet, Cauchy Matrix Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

我们以前已经深入研究了求解椭圆链式KP方程的直接线性化方法,而求解该方程的柯西矩阵方法只是近年来的一个热门主题。本文将讨论基于柯西矩阵方法的椭圆链式KP方程的可积性,为下一步的求解做准备。本文首先从辅助向量u(2i)=(IXC)?1Pic出发得到椭圆链式KP系统的lax组,然后从Lax组中推导出椭圆链式KP系统来完成闭环。
We have previously delved into direct linearization methods for solving the elliptic lattice KP system, and the Cauchy matrix method for solving this equation has only been a hot topic in recent years. This article will discuss the integrability of the elliptic lattice KP system based on the Cauchy matrix method, in preparation for the next step of solution. Firstly, starting from the auxiliary vectoru(2i)=(IXC)?1Pic, we obtain the lax system of the elliptic lattice KP system, and then derive the elliptic lattice KP system from the lax system to complete the closed-loop process.

References

[1]  Hietarinta, J., Joshi, N. and Nijhoff, F.W. (2016) Discrete Systems an Integrability. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781107337411
[2]  Nijhoff, F.W. and Papageorgiou, V. (1989) Lattice Equations Associated with the Landau-Lifschitz Equations. Physics Letters A, 141, 269-274.
https://doi.org/10.1016/0375-9601(89)90483-0
[3]  Adler, V.E. (1998) B?cklund Transformation for the Krichever-Novikov Equation. International Mathematics Research Notices, 1, 1-4.
[4]  Adler, V.E., Bobenko, A.I. and Suris, Y.B. (2003) Classification of Integrable Equations on Quad-Graphs, the Consistency Approach. Communications in Mathematical Physics, 233, 513-543.
https://doi.org/10.1007/s00220-002-0762-8
[5]  Adler, V.E. and Yamilov, R.I. (1994) Explicit Auto-Transformations of Integrable Chains. Journal of Physics A: Mathematical and General, 27, 477-492.
https://doi.org/10.1088/0305-4470/27/2/030
[6]  Nijhoff, F.W. and Puttock, S.E. (2003) On a Two-Parameter Extension of the Lattice KdV System Associated with an Elliptic Curve. Journal of Nonlinear Mathematical Physics, 10, 107-123.
https://doi.org/10.2991/jnmp.2003.10.s1.8
[7]  Nijhoff, F.W., Capel, H.W., Wiersma, G.L. and Quispel, G.R.W. (1984) B?cklund Transformations and Three Dimensional Lattice Equations. Physics Letters A, 105, 267-272.
https://doi.org/10.1016/0375-9601(84)90994-0
[8]  Jennings, P. and Nijhoff, F.W. (2014) On an Elliptic Extension of the Kadomtsev-Petviashvili Equation. Journal of Physics A: Mathematical and Theoretical, 47, 055205.
https://doi.org/10.1088/1751-8113/47/5/055205
[9]  Xu, D.D., Zhang, D.J. and Zhao, S.L. (2014) The Sylvester Equation and Integrable Equations, I. The Kortewegde Vries System and Sine-Gordon Equation. Journal of Nonlinear Mathematical Physics, 21, 382-406.
https://doi.org/10.1080/14029251.2014.936759
[10]  Sun, Y.Y., Zhang, D.J. and Nijhoff, F.W. (2017) The Sylvester Equation and the Elliptic Korteweg-De Vries System. Journal of Mathematical Physics, 58, 033504.
https://doi.org/10.1063/1.4977477
[11]  Nijhoff, F.W., Atkinson, J. and Hietarinta, J. (2009) Soliton Solutions for ABS Lattice Equations, I. Cauchy Matrix Approach. Journal of Physics A: Mathematical and Theoretical, 42, 404005.
https://doi.org/10.1088/1751-8113/42/40/404005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133