|
Material Sciences 2024
基于第一性原理的5083铝合金第二相理化性质研究
|
Abstract:
为揭示5083合金第二相对合金性能影响机理,本文采用相图计算的方式,研究了5083合金中潜在的第二相种类及数量,并在此基础上,通过量子力学计算的方法,系统探究了合金中潜在各相的弹性常数以及与α-Al基体间费米能差值等理化性质。研究结果表明合金中潜在第二相主要有β-Al3Mg2、Al6Mn、T-AlCuMgZn、E-AlCrMgMn、Mg2Si、Al3M_Do22及Al3Fe,其体模量从大到小排布顺序为Al3Ti、Al6Mn、Al3Fe、E-AlCrMgMn、T-AlCuMgZn、Mg2Si及β-Al3Mg2,剪切模量亦类同,除Mg2Si与β-Al3Mg2互换位置。合金中与α-Al基体腐蚀电位差异大小排布顺序为Mg2Si、Al3Fe、Al6Mn、T-AlCuMgZn、E-AlCrMgMn、β-Al3Mg2以及Al3Ti,各相与α-Al基体间形成微腐蚀电池能力依次减弱。
This study investigates the impact of the second phase on the properties of 5083 alloy by employing phase diagram calculations to analyze the types and quantities of the second phase present. Utilizing quantum mechanics calculations, the elastic constants of potential phases in the alloy and the Fermi energy difference between the alloy and the α-Al matrix were examined. The findings reveal that the predominant second phases in the alloy consist of β-Al3Mg2, Al6Mn, T-AlCuMgZn, E-AlCrMgMn, Mg2Si, Al3M_Do22, and Al3Fe. The bulk modulus ranking from highest to lowest are Al3Ti, Al6Mn, Al3Fe, E-AlCrMgMn, T-AlCuMgZn, Mg2Si, and β-Al3Mg2, with a similar trend observed for the shear modulus, except for Mg2Si and β-Al3Mg2 switching positions. The difference in corrosion potential between the phases and the α-Al matrix follows the order of Mg2Si, Al3Fe, Al6Mn, T-AlCuMgZn, E-AlCrMgMn, β-Al3Mg2, and Al3Ti. The ability to form micro-corrosion cells between each phase and the α-Al matrix gradually diminishes.
[1] | 张新明, 邓运来. 新型合金材料——铝合金[M]. 北京: 中国铁道出版社, 2018. |
[2] | 罗芬, 吴锡坤. 铝型材加工适用技术手册[M]. 长沙: 中南大学出版社, 2006: 447-453. |
[3] | 王月, 吴庭翱. 含钪Al-Mg合金的抗应力腐蚀和剥落腐蚀性能研究[J]. 中国腐蚀与防护学报, 2005, 25(4): 218-221. |
[4] | 杨磊. Zn对5083高镁铝合金腐蚀性能的影响与Al-Mg-(Zn)合金中第二相的模拟研究[D]: [硕士学位论文]. 长沙:中南大学, 2012. |
[5] | Choi, D.-H., Ahn, B.-W., Quesnel, D.J. and Jung, S.-B. (2013) Behavior of β Phase (Al3Mg2) in AA 5083 during Friction Stir Welding. Intermetallics, 35, 120-127. https://doi.org/10.1016/j.intermet.2012.12.004 |
[6] | Goswami, R., Spanos, G., Pao, P.S. and Holtz, R.L. (2010) Precipitation Behavior of the β Phase in Al-5083. Materials Science and Engineering: A, 527, 1089-1095. https://doi.org/10.1016/j.msea.2009.10.007 |
[7] | 赵婧婧. 5052铝合金微合金化及均匀化退火工艺研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2014. |
[8] | Shuaib, A.N. (2002) Mechanical Properties of Al-2.5Mg-0.1Mn-Si-Cr-Fe Alloys. Materials & Design, 23, 181-187. https://doi.org/10.1016/S0261-3069(01)00067-X |
[9] | Lodgaard, L. and Ryum, N. (2000) Precipitation of Dispersoids Containing Mn and/or Cr in Al-Mg-Si Alloys. Materials Science & Engineering: A, 283, 144-152. https://doi.org/10.1016/S0921-5093(00)00734-6 |
[10] | 尹奎波. Al-Mg合金的晶粒细化研究[D]: [硕士学位论文]. 济南: 山东大学, 2005. |
[11] | Conserva, M., Trippodo, R. and Donzelli, G. (1992) Aluminium and It Applications. Edimet, Brescia. |
[12] | 田荣璋, 王祝堂. 铝合金及其加工手册[M]. 长沙: 中南工业大学出版社, 2000. |
[13] | 周庆波, 张宏伟, 刘科研, 等. 化学成分对5083铝合金性能的影响[J]. 轻合金加工技术, 2007, 35(10): 33-34. |
[14] | 罗兵辉, 单毅敏, 柏振海. 退火温度对淬火后冷轧5083 铝合金组织及腐蚀性能的影响[J]. 中南大学报: 自然科学版, 2007, 38(5): 802-806. |
[15] | 苏天, 赵艳君, 胡治流, 等. 5083铝合金成分优化及耐腐蚀性能研究[J]. 有色金属工程, 2020, 10(7): 32-39. |
[16] | 涂杨帆. 5083铝合金在不同模拟海水介质中的腐蚀行为研究[D]: [硕士学位论文]. 济南: 山东建筑大学, 2017. |
[17] | 覃秋慧, 韦昌, 冼满峰. 补充退火对船用5083-H116铝合金板材腐蚀和力学性能的影响[J]. 轻合金加工技术, 2021, 49(3): 31-36. |
[18] | 陈维, 罗兵辉, 高阳, 等. 添加少量Zn、Cu的5083铝合金的力学和腐蚀性能[J]. 铝加工, 2018(1): 9-14. |
[19] | Clark, S.J., Segall, M.D., Pickard, C.J., et al. (2005) First Principles Methods Using CASTEP. Zeitschrift fur Kristallographie, 220, 567-570. https://doi.org/10.1524/zkri.220.5.567.65075 |
[20] | Kresse, G. and Hafner, J. (1994) Norm-Conserving and Ultrasoft Pseudopotentials for First-Row and Transition Elements. Journal of Physics: Condensed Matter, 6, 8245-8257. https://doi.org/10.1088/0953-8984/6/40/015 |
[21] | Zope, R.R. and Mishin, Y. (2003) Interatomic Potentials for Atomistic Simulations of the Ti-Al System. Physical Review B, 68, Article 024102. https://doi.org/10.1103/PhysRevB.68.024102 |
[22] | Gilman, J.J. and Roberts, B.W. (1961) Elastic Constants of TiC and TiB2. Journal of Applied Physics, 32, 1405. https://doi.org/10.1063/1.1736249 |
[23] | Mott, P.H., Dorgan, J.R. and Roland, C.M. (2008) The Bulk Modulus and Poisson’s Ratio of “Incompressible” Materials. Journal of Sound and Vibration, 312, 572-575. https://doi.org/10.1016/j.jsv.2008.01.026 |
[24] | Henann, D.L. and Anand, L. (2009) Fracture of Metallic Glasses at Notches: Effects of Notch-Root Radius and the Ratio of the Elastic Shear Modulus to the Bulk Modulus on Toughness. Acta Materialia, 57, 6057-6074. https://doi.org/10.1016/j.actamat.2009.08.031 |
[25] | Daalderop, G.H., Kelly, P.J. and Schuurmans, M.F. (1990) First-Principles Calculation of the Magnetocrystalline Anisotropy Energy of Iron, Cobalt, and Nickel. Physical Review B, 41, 11919-11937. https://doi.org/10.1103/PhysRevB.41.11919 |
[26] | Vargel, C. (2004) Preface to the Original French Edition. In: Corrosion of Aluminium, Elsevier, Amsterdam, 13-14. https://doi.org/10.1016/B978-008044495-6/50003-3 |