All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

A Comparison of Hydrothermal Aging, SO2 and Propene Poisoning Effects on NH3-SCR over Cu-ZSM-5 and Cu-SAPO-34 Catalysts

DOI: 10.4236/msce.2024.125002, PP. 10-28

Keywords: Hydrothermal Aging, Propene and SO2 Poisoning, Ammonia-Selective Catalytic Reduction (NH3-SCR), Cu-SAPO-34, Cu-ZSM-5

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study was aimed to investigate the effects of hydrothermal aging, propene and SO2 poisoning on the ammonia-selective catalytic reduction (NH3-SCR) performance of both Cu-SAPO-34 and Cu-ZSM-5. The catalytic activities of fresh, aged and poisoned samples were tested in ammonia-selective catalytic reduction (NH3-SCR) of NOx conditions. The XRD, TG and N2-desorption results showed that the structures of the Cu-SAPO-34 and Cu-ZSM-5 remained intact after 750˚C hydrothermally aged, SO2 and propene poisoned. After hydrothermal aging at 750˚C for 12 h, the NO reduction performance of Cu-ZSM-5 was significantly reduced at lower temperatures, while that of Cu-SAPO-34 was less affected. Moreover, Cu-SAPO-34 catalyst showed high NO conversion with SO2 or propene compared to Cu-ZSM-5. However, Cu-ZSM-5 showed a larger drop in catalytic activity with SO2 or propene compared to Cu-SAPO-34 catalyst. The H2-TPR results showed that Cu2 ions could be reduced to Cu and Cu0 for Cu-ZSM-5, while no significant transformation of copper species was observed for Cu-SAPO-34. Meanwhile, the UV-vis DRS results showed that CuO species were formed in Cu-ZSM-5, while little changes were observed for the Cu-SAPO-34. Cu-SAPO-34 showed high sulfur and hydrocarbon poison resistance compared to Cu-ZSM-5. In summary, Cu-SAPO-34 with small-pore zeolite showed higher hydrothermal stability and better hydrocarbon and sulfur poison resistant than Cu-ZSM-5 with medium-pore.

References

[1]  Kwak, J.H., Tran, D., Burton, S.D., Szanyi, J., Lee, J.H. and Peden, C.H.F. (2012) Effects of Hydrothermal Aging on NH3-SCR Reaction over Cu/Zeolites. Journal of Catalysis, 287, 203-209.
https://doi.org/10.1016/j.jcat.2011.12.025
[2]  Doi, Y., Haneda, M. and Ozawa, M. (2014) Direct Decomposition of NO on Ba Catalysts Supported on Rare Earth Oxides. Journal of Molecular Catalysis A: Chemical, 383-384, 70-76.
https://doi.org/10.1016/j.molcata.2013.11.033
[3]  Ma, L., Cheng, Y., Cavataio, G., Mcabe, R.W., Fu, L. and Li, J. (2013) Characterization of Commercial Cu-SSZ-13 and Cu-SAPO-34 Catalysts with Hydrothermal Treatment for NH3-SCR of NOx in Diesel Exhaust. Chemical Engineering Journal, 225, 323-330.
https://doi.org/10.1016/j.cej.2013.03.078
[4]  Franco, R.M., Moliner, M., Franch, C., Kustov, A. and Corma, A. (2012) Rational Direct Synthesis Methodology of Very Active and Hydrothermally Stable Cu-SAPO-34 Molecular Sieves for the SCR of NOx. Applied Catalysis B: Environmental, 127, 273-280.
https://doi.org/10.1016/j.apcatb.2012.08.034
[5]  Gabrielsson, L.T. (2004) Urea-SCR in Automotive Applications. Topics in Catalysis, 28, 177-184.
https://doi.org/10.1023/B:TOCA.0000024348.34477.4c
[6]  Wang, D., Jangjou, Y., Liu, Y., Sharma, M.K., Luo, J., Li, J., Kamasamudram, K. and Epling, W.S. (2015) A Comparison of Hydrothermal Aging Effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 Catalysts. Applied Catalysis B: Environmental, 165, 438-445.
https://doi.org/10.1016/j.apcatb.2014.10.020
[7]  Kwak, J.H., Zhu, H., Lee, J.H., Peden, C.H.F. and Szanyi, J. (2012) Two Different Cationic Positions in Cu-SSZ-13? Chemical Communications, 48, 4758-4760.
https://doi.org/10.1039/c2cc31184d
[8]  Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S.-I. and Kagawa, S. (1986) Copper (II) Ion-Exchanged ZSM-5 Zeolite as Highly Active Catalysts for Direct and Continuous Decomposition of Nitrogen Oxide. Journal of the Chemical Society, Chemical Communications, No. 16, 1272-1273.
https://doi.org/10.1039/c39860001272
[9]  Ye, Q., Wang, L. and Yang, R.T. (2012) Activity, Propene Poisoning Resistance and Hydrothermal Stability of Copper Exchanged Chabazite-Like Zeolite Catalysts for SCR of NO with Ammonia in Comparison to Cu/ZSM-5. Applied Catalysis A: General, 427-428, 24-34.
https://doi.org/10.1016/j.apcata.2012.03.026
[10]  Gomez, S.A., Campero, A., Martinez-Hermandez, A. and Fuentes, G.A. (2000) Changes in Cu2 Environment upon Wet Deactivation of Cu-ZSM-5 DeNOx Catalyst. Applied Catalysis A: General, 197, 157-164.
https://doi.org/10.1016/S0926-860X(99)00546-3
[11]  Kucherov, A.V., Hubbard, C.P. and Shelef, M. (1995) Rearrangement of Cationic Sites in CuH-ZSM-5 and Reactivity Loss upon High Temperature Calcination and Steam Aging. Journal of Catalysis, 157, 603-610.
https://doi.org/10.1006/jcat.1995.1325
[12]  Tanabe, T., Iijima, T., Koiwai, A., Mizuno, J., Yokota, K. and Isogai, A. (1995) ESR Study of the Deactivation of Cu-ZSM-5 in a Net Oxidizing Atmosphere. Applied Catalysis B: Environmental, 6, 145-153.
https://doi.org/10.1016/0926-3373(95)00012-7
[13]  Rokosz, M.J., Kucherov, A.V., Jen, H.W. and Shelef, M. (1997) Spectroscopic Studies of the Stability of the Zeolitc deNOx Catalysts. Catalysis Today, 35, 65-73.
https://doi.org/10.1016/S0920-5861(96)00144-7
[14]  Kucherov, A.V., Gerlock, J.L., Jen, H.W. and Shelef, M. (1995) In situ ESR Monitoring of CuH-ZSM-5 up 500˚C in Flowing Dry Mixtures of NO (NO2), C3H6 (C2H5OH), and an Excess O2. Journal of Catalysis, 152, 63-69.
https://doi.org/10.1006/jcat.1995.1060
[15]  Zhang, Y. and Stephanopoulos, M.F. (1996) Hydrothermal Stability of Cerium Modified Cu-ZSM-5 Catalyst for Nitric Oxide Decomposition. Journal of Catalysis, 164, 131-145.
https://doi.org/10.1006/jcat.1996.0369
[16]  Breggrund, M., Ingelsten, H.H., Skoglundh, M. and Palmqvist, A.E.C. (2009) Influence of Synthesis for ZSM-5 on the Hydrothermal Stability of Cu-ZSM-5. Catalysis Letters, 130, 79-85.
https://doi.org/10.1007/s10562-009-9890-5
[17]  Gabova, V., Dedeeek, J. and Cejka, J. (2003) Control of Al Distribution in ZSM-5 by Condition of Zeolite Synthesis. Chemical Communications, No. 10, 1196-1197.
https://doi.org/10.1039/b301634j
[18]  Wang, J., Fan, D., Yu, T., Wang, J., Hao, T., Hu, X. and Shen, M. (2015) Improvement of Low-Temperature Hydrothermal Stability of Cu/SAPO-34 Catalysts by Cu2 Species. Journal of Catalysis, 322, 84-90.
https://doi.org/10.1016/j.jcat.2014.11.010
[19]  Luo, J., Wang, D., Kumar, A., Li, J., Kamasamudram, K., Currier, N. and Yezerets, A. (2016) Identification of Two Types of Cu Sites in Cu-SSZ-13 and Their Unique Responses to Hydrothermal Aging and Sulfur Poisoning. Catalysis Today, 267, 3-9.
https://doi.org/10.1016/j.cattod.2015.12.002
[20]  Briend, M., Vomscheid, R., Peltre, M.J., Man, P.P. and Barthomeuf, D. (1995) Influence of the Choice of the Template on the Short-and Long-Term Stability of SAPO-34 Zeolite. Journal of Physical Chemistry, 99, 8270-8276.
https://doi.org/10.1016/j.cattod.2015.12.002
[21]  Sultana, A., Nanba, T., Sasaki, M., Haneda, M., Suzuki, K. and Hamada, H. (2011) Selective Catalytic Reduction of NOx with NH3 over Different Copper Exchanged Z eolites in the Presence of Decane. Catalysis Today, 164, 495-499.
https://doi.org/10.1016/j.cattod.2010.11.036
[22]  Tukur, N.M. and Al-Khattaf, S. (2005) Catalytic Cracking of n-Dodecane and Alkyl Benzenes over FCC Zeolite Catalysts. Time and Stream and Reactant Converter Models. Chemical Engineering and Processing, 44, 1257-1268.
https://doi.org/10.1016/j.cep.2005.02.009
[23]  He, C., Wang, Y., Cheng, Y., Lambert, C.K. and Yang, R.T. (2009) Activity, Stability and Hydrocarbon Deactivation of Fe/Beta Catalyst for SCR of NO with Ammonia. Applied Catalysis B: General, 368, 121-126.
https://doi.org/10.1016/j.apcata.2009.08.020
[24]  Luo, J.Y., Oh, H., Henry, C. and Epling, W. (2012) Effect of C3H6 on Selective Catalytic Reduction of NOx by NH3 over a Cu/Zeolite Catalyst: A Mechanistic Study. Applied Catalysis B: Environmental, 123-124, 296-305.
https://doi.org/10.1016/j.apcatb.2012.04.038
[25]  Ma, L., Su, W., Li, Z., Li, J., Fu, L. and Hao, J. (2015) Mechanism of Propene Poisoning on Cu-SSZ-13 Catalysts for SCR of NOx with NH3. Catalysis Today, 245, 16-21.
https://doi.org/10.1016/j.cattod.2014.05.027
[26]  Selleri, T., Nova, I., Tronconi, E., Weibel, M. and Schmmeiβer, V. (2017) Modelling Inhibition Effect of Short-Chain Hydrocarbons on a Small-Pore Cu-Zeolite NH3-SCR Catalysts. Topics in Catalysis, 60, 214-219.
https://doi.org/10.1007/s11244-016-0600-4
[27]  Wang, D., Li, Z. and Song, C. (2021) The Enhanced Catalytic Activity of Cu/ SAPO-34 by Ion Exchange Method for Selective Catalytic Reduction of Nitric Oxide. Materials Research Express, 8, Article 025507.
https://doi.org/10.1088/2053-1591/abe6d3
[28]  Zhang, Q., Li, Z., Cui, J., Ma, Y., et al. (2023) Efficiency of Temperature on Ce and La Doping Cu Modified IM-5 Catalyst in DeNOx Performance and SO2/H2O Resistance. Research on Chemical Intermediates, 49, 4997-5013.
https://doi.org/10.1007/s11164-023-05127-y
[29]  Ma, J., Si, Z., Weng, D., Wu, X. and Ma, Y. (2015) Potassium Poisoning on Cu-SAPO-34 Catalyst for Selective Catalytic Reduction of NOx with Ammonia. Chemical Engineering Journal, 267, 191-200.
https://doi.org/10.1016/j.cej.2014.11.020
[30]  Wang, J., Huang, Y., Yu, T., Zhu, S., Shen, M., Li, W. and Wang, J. (2014) The Migration of Cu Species over Cu-SAPO-34 and It Effect on NH3 Oxidation at High Temperature. Catalysis Science & Technology, 4, 3004-3012.
https://doi.org/10.1039/C4CY00451E
[31]  Cao, Y., Zou, S., Yang, Z., Xu, H., Lin, T., Gong, M. and Chen, Y. (2015) Promotional Effect of Ce on Cu-SAPO-34 Monolith Catalyst for Selective Catalytic Reduction of NOx Ammonia. Journal of Molecular Catalysis A: Chemical, 398, 304-311.
https://doi.org/10.1016/j.molcata.2014.12.020
[32]  Pang, L., Fan, C., Shao, L., Song, K., Yi, J., Cai, X., Wang, J., Kang, M. and Li, T. (2014) The Ce Doping Cu/ZSM-5 as a New Superior Catalyst to Remove NO from Diesel Engine Exhaust. Chemical Engineering Journal, 253, 394-401.
https://doi.org/10.1016/j.cej.2014.05.090
[33]  Zhang, T., Liu, J., Wang, D.X., Zhao, Z., Wei, Y.C., Cheng, K., Jiang, G.Y. and Duan, A.J. (2014) Selective Catalytic Reduction of NO with NH3 over HZSM-5-Supported Fe-Cu Nanocomposite Catalysts: The Fe-Cu Bimetallic Effect. Applied Catalysis B: Environmental, 148-149, 520-531.
https://doi.org/10.1016/j.apcatb.2013.11.006
[34]  Zhang, L., Wang, D., Liu, Y., Kamassamudram, K., Li, J. and Epling, W. (2014) SO2 Poisoning Impact on the NH3-SCR Reaction over a Commercial Cu-SAPO-34 SCR Catalyst. Applied Catalysis B: Environmental, 156-157, 371-377.
https://doi.org/10.1016/j.apcatb.2014.03.030
[35]  Heo, I., Lee, Y., Nam, I.-S., Choung, J.W., Lee, J.-H. and Kim, H.-J. (2011) Effect of Hydrocarbon Slip on NO Removal Activity of Cu-ZSM-5, Fe-ZSM-5 and V2O5/TiO2 Catalysts by NH3. Microporous and Mesoporous Materials, 141, 8-15.
https://doi.org/10.1016/j.micromeso.2010.02.005
[36]  Ma, L., Li, J., Cheng, Y., Lambert, C.K. and Fu, L. (2012) Propene Poisoning on Three Typical Fe-Zeolites for SCR of NOx with NH3: From Mechanism Study to Coating Modified Architecture. Environmental Science & Technology, 46, 1747-1754.
https://doi.org/10.1021/es203070g
[37]  Yan, J.Y., Sachtler, W.M.H. and Kung, H.H. (1997) Effect of Cu Loading Addition of Modifiers on the Stability of Cu/ZSM-5 in Lean NOx Reduction Catalysis. Catalysis Today, 33, 279-290.
https://doi.org/10.1016/S0920-5861(96)00100-9
[38]  Zhang, T., Shi, J., Liu, J., Wang, D., Zhao, Z., Cheng, K. and Li, J. (2016) Enhanced Hydrothermal Stability of Cu-ZSM-5 Catalyst via Surface Modification in the Selective Catalytic Reduction of NO with NH3. Applied Surface Science, 375, 186-195.
https://doi.org/10.1016/j.apsusc.2016.03.049
[39]  Yan, J.Y., Lei, G.-D., Sachtler, W.M.H. and Kung, H.H. (1996) Deactivation of Cu-ZSM-5 Catalyst for Lean NOx Reduction: Characterization of Changes of Cu State and Zeolite Support. Journal of Catalysis, 161, 43-54.
https://doi.org/10.1006/jcat.1996.0160
[40]  Dang, T.T.H., Zubowa, H.L., Bentrup, U., Richter, M. and Martin, A. (2009) Microwave-Assisted Synthesis and Characterization of Cu-Containing ALPO4-5 and SAPO-5. Microporous and Mesoporous Materials, 123, 209-220.
https://doi.org/10.1016/j.micromeso.2009.04.003
[41]  Wang, L., Gaudet, J.R., Li, W. and Weng, D. (2013) Migration of Cu Species in Cu/SAPO-34 during Hydrothermal Aging. Journal of Catalysis, 306, 68-77.
https://doi.org/10.1016/j.jcat.2013.06.010
[42]  Su, W., Li, Z., Zhang, Y., Meng, C. and Li, J. (2017) Identification of Sulfate Species and Their Influence on SCR Performance of Cu/CHA Catalyst. Catalysis Science & Technology, 7, 1523-1528.
https://doi.org/10.1039/C7CY00302A
[43]  Zhang, D. and Yang, R.T. (2017) NH3-SCR of NO over One-Pot Cu-SAPO-34 Catalyst: Performance Enhancement by Doping Fe and MnCe and Insight into N2O Formation. Applied Catalysis A: General, 543, 247-256.
https://doi.org/10.1016/j.apcata.2017.06.021

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133