全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关键结构参数对喷射器性能影响及结构优化
Influence of Key Structural Parameters on Ejector Performance and Structure Optimization

DOI: 10.12677/mos.2024.133245, PP. 2697-2707

Keywords: 蒸汽喷射器,结构优化,喷射系数
Steam Ejector
, Structure Optimization, Entrainment Ratio

Full-Text   Cite this paper   Add to My Lib

Abstract:

蒸汽喷射器是蒸汽热压缩低温多效蒸馏海水淡化系统的关键部件,其性能将直接影响系统性能。喷射器的结构参数对喷射器性能有较大影响,优化结构参数是提高喷射器性能的有效途径之一。本文采用CFD方法建立了应用于蒸汽热压缩低温多效蒸馏海水淡化系统蒸汽喷射器的二维轴对称数值模型,对固定工况下不同喷嘴出口位置、等截面积、混合室直径和长度三个关键结构参数对喷射器性能的影响进行分析,并进行了优化设计。结果表明:随着喷嘴出口位置距混合室入口截面之间距离的增大,喷射系数先增大后减小,存在最优值;喷射系数随等截面积混合室直径的增大而增大,等截面积混合室长度对喷射系数无明显影响;蒸汽喷射器的最优结构参数组合所得喷射系数为0.582,与优化前喷射器的喷射系数0.408相比,提升了42.65%。
Steam ejector is the key component of multi-effect distillation with thermal vapor compression seawater desalination system, and its performance will directly affect the system performance. The structural parameters of the ejector have great influence on the performance of the ejector. Optimizing the structural parameters is one of the effective ways to improve the performance of the ejector. In this work, a two-dimensional axisymmetric numerical model of steam ejector used in multi-effect distillation with thermal vapor compression seawater desalination system is developed using CFD method. The influence of three key structural parameters on the performance of the ejector under a fixed operating condition is analyzed, and the nozzle exit position, constant area mixing chamber diameter and length are optimized. The results show that with the increase of the distance between the nozzle exit position and the inlet section of the mixing chamber, the entrainment ratio first increases and then decreases, and there is an optimal value. The entrainment ratio increases with the increase of the constant area mixing chamber diameter, and the constant area mixing chamber length has no obvious effect on the entrainment ratio. The entrainment ratio obtained by the combination of optimal structural parameters is 0.582, which is 42.65% higher than the entrainment ratio 0.408 before optimization.

References

[1]  Sadasivan, S., Arumugam, S.K., Chandran, R.J. and Aggarwal, M.C. (2023) Effects of Influencing Factors on the Performance and Morphology of Shock Waves in Ejectors: A Review. International Journal of Modern Physics C, 34, Article ID: 2350142.
https://doi.org/10.1142/S0129183123501425
[2]  Li, A., Chen, J., Xi, G. and Huang, Z. (2023) Numerical Investigation of the Effect of Primary Nozzle Geometries on Flow Structure and Ejector Performance for Optimal Design. Journal of Mechanical Science and Technology, 37, 2139-2148.
https://doi.org/10.1007/s12206-023-2101-2
[3]  Chen, J., Havtun, H. and Palm, B. (2014) Parametric Analysis of Ejector Working Characteristics in the Refrigeration System. Applied Thermal Engineering, 69, 130-142.
https://doi.org/10.1016/j.applthermaleng.2014.04.047
[4]  Gu, W., Wang, X., Wang, L., Yin, X. and Liu, H. (2019) Performance Investigation of an Auto-Tuning Area Ratio Ejector for MED-TVC Desalination System. Applied Thermal Engineering, 155, 470-479.
https://doi.org/10.1016/j.applthermaleng.2019.04.018
[5]  Wen, C., Gong, L., Ding, H. and Yang, Y. (2020) Steam Ejector Performance Considering Phase Transition for Multi-Effect Distillation with Thermal Vapour Compression (MED-TVC) Desalination System. Applied Energy, 279, Article ID: 115831.
https://doi.org/10.1016/j.apenergy.2020.115831
[6]  Ding, H., Dong, Y., Zhang, Y., Yang, Y. and Wen, C. (2023) Energy Efficiency Assessment of Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell (PEMFC) System. Applied Energy, 346, Article ID: 121357.
https://doi.org/10.1016/j.apenergy.2023.121357
[7]  Yu, Z., Liu, F. and Li, C. (2023) Numerical Study on Effects of Hydrogen Ejector on PEMFC Performances. Energy, 285, Article ID: 129481.
https://doi.org/10.1016/j.energy.2023.129481
[8]  Chen, J., Sun, M., Li, P., An, B., Wang, J. and Li, M. (2024) Effects of Excess Oxidizer Coefficient on RBCC Engine Performance in Ejector Mode: A Theoretical Investigation. Energy, 289, Article ID: 130070.
https://doi.org/10.1016/j.energy.2023.130070
[9]  Al-Najem, N.M., Darwish, M.A. and Youssef, F.A. (1997) Thermovapor Compression Desalters: Energy and Availability—Analysis of Single-and Multi-Effect Systems. Desalination, 110, 223-238.
https://doi.org/10.1016/S0011-9164(97)00101-X
[10]  Khalid, K.A., Antar, M.A.,Khalifa, A. and Hamed, O.A. (2018) Allocation of Thermal Vapor Compressor in Multi Effect Desalination Systems with Different Feed Configurations. Desalination, 426, 164-173.
https://doi.org/10.1016/j.desal.2017.10.048
[11]  Varga, S., Oliveira, A.C. and Diaconu, B. (2009) Influence of Geometrical Factors on Steam Ejector Performance–A Numerical Assessment. International Journal of Refrigeration, 32, 1694-1701.
https://doi.org/10.1016/j.ijrefrig.2009.05.009
[12]  Dong, J., Wang, W., Han, Z., Ma, H., Deng, Y., Su, F. and Pan, X. (2018) Experimental Investigation of the Steam Ejector in a Single-effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source. Energies, 11, 1-13.
https://doi.org/10.3390/en11092282
[13]  Han, Y., Wang, X., Sun, H., Zhang, G., Guo, L. and Tu, J. (2019) CFD Simulation on the Boundary Layer Separation in the Steam Ejector and Its Influence on the Pumping Performance. Energy, 167, 469-483.
https://doi.org/10.1016/j.energy.2018.10.195
[14]  Pianthong, K., Seehanam, W., Behnia, M., Sriveerakul, T. and Aphornratana, S. (2007) Investigation and Improvement of Ejector Refrigeration System Using Computational Fluid Dynamics Technique. Energy Conversion and Management, 48, 2556-2564.
https://doi.org/10.1016/j.enconman.2007.03.021
[15]  Zhu, Y., Cai, W., Wen, C. and Li, Y. (2009) Numerical Investigation of Geometry Parameters for Design of High Performance Ejectors. Applied Thermal Engineering, 29, 898-905.
https://doi.org/10.1016/j.applthermaleng.2008.04.025
[16]  Wu, Y., Zhao, H., Zhang, C., Wang, L. and Han, J. (2018) Optimization Analysis of Structure Parameters of Steam Ejector Based on CFD and Orthogonal Test. Energy, 151, 79-93.
https://doi.org/10.1016/j.energy.2018.03.041
[17]  张师帅. CFD技术原理与应用[M]. 武汉: 华中科技大学出版社, 2016: 5-8.
[18]  Sriveerakul, T., Aphornratana, S. and Chunnanond, K. (2007) Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 1. Validation of the CFD Results. International Journal of Thermal Sciences, 46, 812-822.
https://doi.org/10.1016/j.ijthermalsci.2006.10.014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133