|
基于改进ConvNeXt的轴承故障诊断研究
|
Abstract:
根据现有的网络模型(ConvNeXt)在处理小样本任务过程中,无法完全提供故障信息、所需样本数据量过大、泛化性能不足和鲁棒性能较低的特点,提出一种改进型ConvNeXt网络模型的轴承故障诊断方法。首先使用格拉姆角差场图像编码技术将故障样本进行解码得到相应的故障特征图;然后通过随机裁剪、旋转等方法,对数据增强模块进行改进;其次利用非对称卷积思想对ConvNeXt模型的大卷积核进行重构,增强模型对小样本任务的处理能力;最后融入CBAM注意力机制,提高模型对信号特征的通道和空间方面的提取能力。实验表明,改进型ConvNeXt网络模型对滚动轴承不同故障直径的识别准确率达到了98.3%,相比较GADF VggNet,GADF ResNet,GADF ConvNeXt等网络模型,分别提高了16.7%,1.4%和4.05%。结果表明,所改进模型提升了原始模型在处理小样本条件下故障诊断效果,并且在不同故障直径滚动轴承条件下,故障诊断的准确率优于其他模型,且具有较强的泛化性和鲁棒性。
Based on the characteristics of existing network models (ConvNeXt) that cannot fully provide fault information, require a large amount of sample data, have insufficient generalization performance, and low robustness in processing small sample tasks, an improved ConvNeXt network model for bearing fault diagnosis is proposed. Firstly, the Gram angle difference field image encoding technique is used to decode the fault samples and obtain the corresponding fault feature maps; Then, by using methods such as random cropping and rotation, the data augmentation module is improved; Secondly, the ConvNeXt model is reconstructed using asymmetric convolution to enhance its ability to handle small sample tasks; Finally, incorporating the CBAM attention mechanism enhances the model's ability to extract signal features in both channel and spatial aspects. The experiment showed that the improved ConvNeXt network model achieved a recognition accuracy of 98.3% for different fault diameters of rolling bearings. Compared with other network models such as GADF VggNet, GADF ResNet, and GADF ConvNeXt, it improved by 16.7%, 1.4%, and 4.05%, respectively. The results showed that the improved model improved the fault diagnosis performance of the original model under small sample conditions, and the accuracy of fault diagnosis was better than other models under different fault diameter rolling bearing conditions, with strong generalization and robustness.
[1] | 陈剑, 阚东, 孙太华, 等. 基于SVD-VMD和SVM滚动轴承故障诊断方法[J]. 电子测量与仪器学报, 2022, 36(1): 220-226. |
[2] | 杜航, 徐海巍, 楼文娟. 基于短时傅里叶变换的快速贝叶斯模态参数识别方法[J]. 建筑结构学报, 2023, 44(5): 305-314, 334. |
[3] | 李治甫, 康帅, 王自法, 等. 基于时频变换和卷积神经网络的结构损伤识别[J]. 防灾减灾工程学报, 2023, 43(6): 1275-1283. |
[4] | 李寿涛, 屈如意, 张宇, 等. 基于变分模态分解的冻结步态识别方法[J]. 东北大学学报(自然科学版), 2023, 44(11): 1543-1547, 1555. |
[5] | 谢星怡, 张正江, 闫正兵, 等. 基于信号特征提取和卷积神经网络的轴承故障诊断研究[J]. 计算机测量与控制, 2023, 31(10): 21-27. |
[6] | 程亮, 董子健, 王树民, 等. 基于改进一维卷积神经网络的滚动轴承故障诊断分析[J]. 机械设计与研究, 2023, 39(3): 126-130. |
[7] | 陆浩博. 基于二维卷积神经网络的逆变器故障诊断研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2024. |
[8] | 李超. 基于时频图的2DCNN轴承故障诊断方法研究[D]: [硕士学位论文]. 大连: 大连交通大学, 2023. |
[9] | 宋乾坤, 周孟然. 基于CWT-CNN的滚动轴承故障诊断[J]. 重庆工商大学学报(自然科学版), 2023, 40(3): 42-47. |
[10] | 陈向民, 韩梦茹, 舒文伊, 等. 基于VMD与多尺度一维卷积神经网络的故障诊断方法[J]. 现代电子技术, 2023, 46(9): 103-109. https://doi.org/10.16652/j.issn.1004-373x.2023.09.020 |
[11] | Liu, Z., Mao, H.Z., Wu, C.Y., et al. (2022) A ConvNet for the 2020s. 2022 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 11976-11986. https://doi.org/10.1109/CVPR52688.2022.01167 |
[12] | Liu, Z., Lin, Y., Cao, Y., et al. (2021) Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. 2021 Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 10012-10022. https://doi.org/10.1109/ICCV48922.2021.00986 |
[13] | Ma, X., Niu, T., Liu, X., et al. (2022) Remaining Useful Lifetime Prediction of Rolling Bearing Based on ConvNext and Multi-Feature Fusion. 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), Shijiazhuang, 22-24 July 2022, 299-304. https://doi.org/10.1109/ICCEAI55464.2022.00069 |
[14] | 杨文哲, 郝如江, 郭梓良, 等. 基于一维ConvNeXt网络的齿轮箱故障诊断[J]. 国防交通工程与技术, 2023, 21(4): 28-31, 61. |
[15] | 查世康, 黄陈蓉. 基于ConvNeXt和注意力机制的绝缘子自爆故障检测方法[J]. 宁夏电力, 2023(3): 42-50. |
[16] | 赵小强, 梁浩鹏. 使用改进残差神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报, 2020, 54(9): 23-31. |
[17] | 占可, 王寅杰, 董路南, 等. 基于改进格拉姆角场和注意力的滚动轴承故障诊断[J/OL]. 轴承: 1-8. http://kns.cnki.net/kcms/detail/41.1148.TH.20230112.1507.003.html, 2024-05-22. |
[18] | 李雷, 卢才武, 江松, 等. 基于改进ConvNeXt网络的矿物图像智能识别[J/OL]. 地质通报: 1-11. http://kns.cnki.net/kcms/detail/11.4648.P.20230331.1254.002.html, 2024-05-22. |
[19] | Ding, X., Guo, Y., Ding, G., et al. (2019) ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 27 October-2 November 2019, 1911-1920. https://doi.org/10.1109/ICCV.2019.00200 |
[20] | 张帅, 张俊忠, 曹慧, 等. 基于ConvNeXt网络的新冠肺炎X射线图像诊断方法[J]. 激光与光电子学进展, 2023, 60(14): 20-28. |
[21] | 李建威, 吕晓琪, 谷宇. 基于改进ConvNeXt的皮肤镜图像分类方法[J]. 计算机工程, 2023, 49(10): 239-246, 254. |
[22] | 郑世杰, 王高才. 基于ConvNeXt热图定位和对比学习的细粒度图像分类研究[J]. 计算机科学, 2023, 50(10): 119-125. |
[23] | 张宸嘉, 朱磊, 俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用, 2021, 57(20): 64-72. |
[24] | Xu, Q., Su, J., Wang, Y., et al. (2022) Few-Shot Learning Based on Double Pooling Squeeze and Excitation Attention. Electronics, 12, Article 27. https://doi.org/10.3390/electronics12010027 |
[25] | Aolei, L., Sunjie, Z., Zhe, W., et al. (2023) A Learnable Front-End Based Efficient Channel Attention Network for Heart Sound Classification. Physiological Measurement, 44, Article 095003. https://doi.org/10.1088/1361-6579/acf3cf |
[26] | Li, X., Wang, W., Hu, X., et al. (2019) Selective Kernel Networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 15-20 June 2019, 510-519. https://doi.org/10.1109/CVPR.2019.00060 |
[27] | 孙敏, 成倩, 丁希宁. 基于CBAM-CGRU-SVM的Android恶意软件检测方法[J/OL]. 计算机应用: 1-9. http://kns.cnki.net/kcms/detail/51.1307.TP.20231212.1653.006.html, 2024-05-22. |
[28] | 马晓, 董天亮, 钟闻宇, 等. 基于改进ConvNeXt的大豆叶片病害分类研究[J]. 大豆科学, 2023, 42(6): 733-741. |
[29] | CaseWestern Reserve University Bearing Data Center. Bearing Datafile. https://engineering.case.edu/bearingdatacenter/download-data-file |
[30] | 骆家杭, 张旭, 汪靖翔. 基于格拉姆角场和多尺度CNN的轴承故障诊断[J]. 轴承, 2022(6): 73-78. |