全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于双层时序的动态社交网络链路预测
Dynamic Social Network Link Prediction Based on Bi-Layer Temporal Modeling

DOI: 10.12677/mos.2024.133238, PP. 2611-2622

Keywords: 图神经网络,动态图链路预测,双层时序,社交网络
Graph Neural Network
, Dynamic Graph Link Prediction, Bi-Layer Temporal, Social Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

现实世界中存在大量网络图信息,其中社交网络实体间交互的动态性和复杂性使得动态图链路预测成为了一项更具有挑战性的任务。传统基于图神经网络的动态链路方法由于过平滑性往往只关注图中局部特征,难以获取图中实体的全面性信息,并且发现在社交网络中的连通接近性对未来链路预测是有利的。为了解决以上挑战,本文设计了双层时序模型Bi-GTGNN。首先提取每个快照的子图,并将每个快照的子图集抽象为时序序列,然后设计全局时序图神经网络提取图的全局信息并生成快照表示。其次,将每个时间戳的快照表示输入到LSTM中进一步提取时序信息,并设计了新颖的损失函数训练具有连通接近性的图嵌入。最后将具有时序信息的图嵌入用于链路预测。在五个数据集上进行了大量实验,结果表示Bi-GTGNN性能优于其它先进的baseline模型。
In the real world, there is a plethora of network graph information, where the dynamism and complexity of interactions among entities in social networks have made dynamic graph link prediction a more challenging task. Traditional methods based on graph neural networks for dynamic links often focus only on local features of the graph due to over-smoothing, making it difficult to acquire comprehensive information about entities in the graph. Additionally, we observe that the connectivity proximity in social networks is advantageous for future link prediction. To address these challenges, we propose a bi-layer temporal model. Firstly, we extract subgraphs for each snapshot and abstract the subgraph set of each snapshot into a temporal sequence. Then, we design a global temporal graph neural network to extract the global information of the graph and generate snapshot representations. Secondly, we input the snapshot representations of each timestamp into an LSTM to further extract temporal information and design a novel loss function to train graph embeddings with connectivity proximity. Finally, the graph embeddings with temporal information are utilized for link prediction. We conduct extensive experiments on five social network datasets, and the results demonstrate that our model outperforms other state-of-the-art baseline models.

References

[1]  Yang, X., Yang, Y., Su, J., et al. (2022) Who’s Next: Rising Star Prediction via Diffusion of User Interest in Social Networks. IEEE Transactions on Knowledge and Data Engineering, 35, 5413-5425.
https://doi.org/10.1109/TKDE.2022.3151835
[2]  Yang, C., Wang, C., Lu, Y., et al. (2022) Few-Shot Link Prediction in Dynamic Networks. Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, New York, 21-25 February 2022, 1245-1255.
https://doi.org/10.1145/3488560.3498417
[3]  Perozzi, B., Al-Rfou, R. and Skiena, S. (2014) DeepWalk: Online Learning of Social Representations. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 24-27 August 2014, 701-710.
https://doi.org/10.1145/2623330.2623732
[4]  Veli?kovi?, P., Cucurull, G., Casanova, A., et al. (2017) Graph Attention Networks. arXiv:1710.10903.
https://doi.org/10.48550/arXiv.1710.10903
[5]  Yang, C., Liu, Z., Zhao, D., et al. (2015) Network Representation Learning with Rich Text Information. Proceedings of the 24th International Conference on Artificial Intelligence, Buenos Aires, 25-31 July 2015, 2111-2117.
[6]  Gligorijevi?, V., Panagakis, Y. and Zafeiriou, S. (2018) Non-Negative Matrix Factorizations for Multiplex Network Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 928-940.
https://doi.org/10.1109/TPAMI.2018.2821146
[7]  Grover, A. and Leskovec, J. (2016) node2vec: Scalable Feature Learning for Networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 855-864.
https://doi.org/10.1145/2939672.2939754
[8]  Xia, F., Liu, J, Nie, H., et al. (2019) Random Walks: A Review of Algorithms and Applications. IEEE Transactions on Emerging Topics in Computational Intelligence, 4, 95-107.
https://doi.org/10.1109/TETCI.2019.2952908
[9]  Kojaku, S., Yoon, J., Constantino, I., et al. (2021) Residual2Vec: Debiasing Graph Embedding with Random Graphs. arXiv:2110.07654.
https://doi.org/10.48550/arXiv.2110.07654
[10]  Xian, X., Wu, T., Ma, X., et al. (2022) Generative Graph Neural Networks for Link Prediction. arXiv:2301.00169.
https://doi.org/10.48550/arXiv.2301.00169
[11]  Zhou, L., Yang, Y., Ren, X., et al. (2018) Dynamic Network Embedding by Modeling Triadic Closure Process. Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, 2-7 February 2018.
https://doi.org/10.1609/aaai.v32i1.11257
[12]  Goyal, P., Kamra, N., He, X., et al. (2018) Dyngem: Deep Embedding Method for Dynamic Graphs. arXiv:1805.11273.
https://doi.org/10.48550/arXiv.1805.11273
[13]  Kipf, T.N. and Welling, M. (2016) Semi-Supervised Classification with Graph Convolutional Networks. arXiv:1609.02907.
https://doi.org/10.48550/arXiv.1609.02907
[14]  Hamilton, W., Ying, Z. and Leskovec, J. (2017) Inductive Representation Learning on Large Graphs. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 1025-1035.
[15]  Chen, J., Ma, T. and Xiao, C. (2018) Fastgcn: Fast Learning with Graph Convolutional Networks via Importance Sampling. arXiv:1801.10247.
https://doi.org/10.48550/arXiv.1801.10247
[16]  Xu, K., Hu, W., Leskovec, J., et al. (2018) How Powerful Are Graph Neural Networks? arXiv:1810.00826.
https://doi.org/10.48550/arXiv.1810.00826
[17]  You, J., Ying, R. and Leskovec, J. (2019) Position-Aware Graph Neural Networks. Proceedings of the 36th International Conference on Machine Learning, Long Beach, 9-15 June 2019, 7134-7143.
[18]  Seo, Y., Defferrard, M., Vandergheynst, P., et al. (2018) Structured Sequence Modeling with Graph Convolutional Recurrent Networks. Neural Information Processing: 25th International Conference, Siem Reap, 13-16 December 2018, 362-373.
https://doi.org/10.1007/978-3-030-04167-0_33
[19]  Zheng, L., Li, Z., Li, J., et al. (2019) AddGraph: Anomaly Detection in Dynamic Graph Using Attention-Based Temporal GCN. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, 10-16 August 2019, 4419-4425.
https://doi.org/10.24963/ijcai.2019/614
[20]  Pareja, A., Domeniconi, G., Chen, J., et al. (2020) EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 5363-5370.
https://doi.org/10.1609/aaai.v34i04.5984
[21]  Chiang, W.L., Liu, X., Si, S., et al. (2019) Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, 4-8 August 2019, 257-266.
https://doi.org/10.1145/3292500.3330925
[22]  Goyal, P., Chhetri, S.R. and Canedo, A. (2020) dyngraph2vec: Capturing Network Dynamics Using Dynamic Graph Representation Learning. Knowledge-Based Systems, 187, Article 104816.
https://doi.org/10.1016/j.knosys.2019.06.024
[23]  Kingma, D.P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv:1412.6980.
https://doi.org/10.48550/arXiv.1412.6980

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133