|
Pharmacy Information 2024
基于头孢曲松钠–牛血清白蛋白相互作用机制的药物协同性研究
|
Abstract:
本文采用荧光和同步荧光光谱法,基于头孢曲松钠(CRO)–牛血清白蛋白(BSA)相互作用机制研究药物协同性和CRO蛋白结合率及BSA中酪氨酸(Tyr)和色氨酸(Trp)残基的药物结合率。结果表明:CRO与BSA结合使BSA中Tyr和Trp残基的荧光发生静态荧光猝灭,且均参与体系结合反应。NSFQ (Tyr) > NSFQ (Trp),结合位置更靠近Tyr残基,结合位点数n ≈ 1,ΔG < 0,ΔH > 0,ΔS > 0,体系环境以疏水作用为主;模拟生理条件下,Hill系数nH ≈ 1,当4.08 mg/L < cCRO < 8.16 mg/L时,CRO-BSA中Tyr残基的药物结合率W(Q)为6.5%~12.6%,Trp残基的药物结合率W(Q)为6.35%~12.07%,Tyr和Trp残基的药物结合对CRO的药效基本没有影响,CRO的蛋白结合率可达95%以上。
In this paper, we used fluorescence and synchronous fluorescence spectroscopy to study drug synergism and CRO protein binding and drug binding of tyrosine (Tyr) and tryptophan (Trp) residues in BSA based on the mechanism of ceftriaxone sodium (CRO)-bovine serum albumin (BSA) interaction. The results showed that CRO binding to BSA caused static fluorescence burst of Tyr and Trp residues in BSA, and both were involved in the system binding reaction. NSFQ (Tyr) > NSFQ (Trp), the binding position was closer to the Tyr residue, the number of binding sites n ≈ 1, ΔG < 0, ΔH > 0, ΔS > 0, and the system environment was predominantly hydrophobic; under simulated physiological conditions, the Hill coefficient nH ≈ 1, when 4.08 mg/L < cCRO < 8.16 mg/L, the drug binding rate W(Q) of Tyr residues in CRO-BSA was 6.5%~12.6%, and that of Trp residues was 6.35%~12.07%, and the drug binding of Tyr and Trp residues was basically unaffected by the drug efficacy of CRO. The protein binding rate of CRO could reach more than 95%.
[1] | 李改霞. 光谱法研究头孢西丁钠、盐酸吡格列酮等药物与蛋白质的反应机理[D]: [硕士学位论文]. 保定: 河北大学, 2016. |
[2] | 薛春霞. 药物分子与牛血清白蛋白相互作用的研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2006. |
[3] | 倪永年, 张方圆, 张秋兰. 光谱法研究刺芒柄花素与牛血清白蛋白的相互作用[J].南昌大学学报(理科版), 2011, 35(2): 146-150. |
[4] | 张春桃, 王静康, 王永莉. 头孢曲松钠结晶工艺研究进展[J]. 中国抗生素杂志, 2006, 31(7): 388-392. |
[5] | 宋林. 共振光散色技术在蛋白质分析检测中的应用研究[D]: [硕士学位论文]. 青海: 青海师范大学, 2013. |
[6] | Braun, A.M. and Maurette, M.T. (1991) Photochem Technology. Oliveros, New York, 41. |
[7] | Lakowicz, J.R. and Weber, G. (1973) Quenching of Fluorescence by Oxygen: A Probe for Structural Fluctuations in Macro-Molecules. Biochemistry, 12, 4161-4170. https://doi.org/10.1021/bi00745a020 |
[8] | Markarian, S.A. and Aznauryan, M.G. (2012) Study on the Interaction between Isoniazid and Bovine Serum Albumin by Fluorescence Spectroscopy: The Effect of Dimethylsulfoxide. Molecular Biology Reports, 39, 7559-7567. https://doi.org/10.1007/s11033-012-1590-3 |
[9] | Topark, M. and Arik, M. (2014) The Investigation of the Interaction between Orientin and Bovine Serum Albumin by Spectroscopy Analysis. Luminescence, 29, 805-809. |
[10] | Su?kowska, A., Maci??ek-Jurczyk, M., Bojko, B., et al. (2008) Competitive Binding of Phenylbutazone and Colchicine to Serum Albumin in Multidrug Therapy: A Spectroscopic Study. Journal of Molecular Structure, 881, 97-106. https://doi.org/10.1016/j.molstruc.2007.09.001 |
[11] | Ehteshami, M., Rasoulzadeh, F., Mahboob, S., et al. (2013) Characterization of 6-Mercaptopurine Binding to Bovinen Serum Albumin and Tis Displacement from the Binding Sites by Quercetin and Rutin. Journal of Luminescence, 135, 164-169. https://doi.org/10.1016/j.jlumin.2012.10.044 |
[12] | Bi, S.Y., Yan, L.L., Pang, B., et al. (2012) Investigation of Three Flavonoids Binding to Bovine Serum Albumin Using Molecular Fluorescence Technique. Journal of Luminescence, 132, 132-140. https://doi.org/10.1016/j.jlumin.2011.08.014 |
[13] | Makarska-Bialokoz, M. (2018) Interactions of Hemin with Bovine Serum Albumin and Human Hemoglobin: A Fluorescence Quenching Study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 23-32. https://doi.org/10.1016/j.saa.2017.11.063 |
[14] | Zhang, Y.Q. and Liu, B.S. (2018) The Comparison between Commercial Spectral Method and Synchronous Fluorescencespectrometry on Interaction of Cefoperazone Sodium with Bovine Transferrin. Chinese Journal of Analysis Laboratory, 37, 503-508. (In Chinese) |
[15] | Wang, Y.Q., Zhang, H.M., Zhang, G.C., et al. (2007) Studies of the Interaction between Paraquat and Bovine Hemoglobin. International Journal of Biological Macromolecules, 41, 243-250. https://doi.org/10.1016/j.ijbiomac.2007.02.011 |
[16] | Bojko, B., Su?kowska, A., Maci??ek-Jurczyk, M., et al. (2010) The Influence of Dietary Habits and Pathological Conditions on the Binding of Theophylline to Serum Albumin. Journal of Pharmaceutical and Biomedical Analysis, 52, 384-390. https://doi.org/10.1016/j.jpba.2009.09.004 |
[17] | Liu, B.S., Wang, J., Xue, C.L., et al. (2011) Spectroscopic Studies on the Interaction of Synthetic Food Colorants with Bovine Serum Albumin. Zeitschrift für Physikalische Chemie, 225, 455-468. https://doi.org/10.1524/zpch.2011.0070 |
[18] | Ma, L.H., Liu, B.S., Wang, C.D., et al. (2018) The Interaction Mechanism of Nifedipine and Pepsin. Monatshefte für Chemie-Chemical Monthly, 149, 2123-2130. https://doi.org/10.1007/s00706-018-2269-9 |
[19] | 科普中国·科学百科. 头孢曲松钠-药代动力学[Z]. http://www.kepuchina.cn/ |