全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

静动组合加载下钢-PE混杂纤维水泥基复合材料动态压缩性能试验研究
Experimental Study on Dynamic Compression Properties of Steel-PE Hybrid Fiber Reinforced Engineered Cementitious Composites under Static and Dynamic Combined Loading

DOI: 10.12677/hjce.2024.135068, PP. 626-637

Keywords: 钢-PE混杂纤维水泥基复合材料(S/PE-HFRECC),静动组合加载,动态抗压强度,应力峰值前韧度
Steel-PE Hybrid Fiber Reinforced Engineered Cementitious Composites (S/PE-HFRECC)
, Static and Dynamic Combined Loading, Dynamic Compressive Strength, Pre-Peak Stress Toughness

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文将钢纤维和聚乙烯(PE)纤维进行混杂,制备了钢-PE混杂纤维水泥基复合材料(S/PE-HFRECC, Steel-PE Hybrid Fiber Reinforced Engineered Cementitious Composites),控制纤维体积总掺量为2%,通过改变两种纤维配比制作了六类水泥基试件(S0E0、S0E2、S0.5E1.5、S1E1、S1.5E0.5和S2E0),并利用可施加预加静态荷载的直径为50 mm的分离式霍普金森压杆(Split Hopkinson Pressure Bar, SHPB)装置开展了静动组合加载条件下S/PE-HFRECC的动态压缩试验,预加静荷载级别分别取试件静态抗压强度的0%、15%、30%和45%四个级别。试验结果表明:1) 预加静态荷载对水泥基复合材料的力学性能有着弱化和强化的双面性。2) S/PE-HFRECC的动态抗压强度、动态峰值应变和应力峰值前韧度随着预加静荷载级别的提高呈现先升高后降低的趋势。3) 相较于单一纤维的掺入,钢-PE混杂纤维在对强度、变形能力和韧度的改善方面有着更好的优越性。
In this paper, the Steel-PE Hybrid Fiber Reinforced Engineered Cementitious Composites (S/PE- HFRECC) were prepared by blending steel fiber and PE fiber, with a controlled total fiber volume content of 2%. Six types of cement-based specimens (S0E0, S0E2, S0.5E1.5, S1E1, S1.5E0.5 and S2E0) were fabricated by varying the ratio of the two types of fibers. A Split Hopkinson Pressure Bar (SHPB) device with a diameter of 50 mm was utilized to conduct dynamic compression tests on the S/PE- HFRECC under static and dynamic combined loading conditions, allowing for pre-static load application at levels corresponding to 0%, 15%, 30% and 45% of the static compressive strength. The test results show that: 1) The mechanical properties of cement-based composites are influenced by preloading static load, resulting in both weakening and strengthening effects. 2) The dynamic compressive strength, dynamic peak strain, and pre-peak stress toughness of S/PE-HFRECC initially increase and then decrease with increasing levels of pre-static load. 3) Compared to single fiber inclusion, steel-PE hybrid fiber exhibits superior advantages in enhancing strength, deformation ability, and toughness.

References

[1]  Li, V.C. and Leung, C.K.Y. (1992) Steady-State and Multiple Cracking of Short Random Fiber Composites. Journal of Materials in Civil Engineering, 118, 2246-2264.
https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
[2]  李亮, 吴文杰, 吴俊, 刘文丽. 水泥基复合材料的研究现状及其在动态冲击领域的应用[J]. 建筑结构, 2018, 48(s1): 545-554.
[3]  马俊. 纤维增强水泥基复合材料的新发展[J]. 高科技纤维与应用, 2002, 27(6): 14-17.
[4]  Said, S.H., Razak, H.A. and Othman, I. (2015) Strength and Deformation Characteristics of Engineered Cementitious Composite Slabs with Different Polymer Fibres. Journal of Reinforced Plastics and Composites, 34, 1950-1962.
https://doi.org/10.1177/0731684415607393
[5]  Wang, Y.C., Liu, F.C., Yu, J.T., Dong, F.Y. and Ye, J.H. (2020) Effect of Polyethylene Fiber Content on Physical and Mechanical Properties of Engineered Cementitious Composites. Construction and Building Materials, 251, Article ID: 118917.
https://doi.org/10.1016/j.conbuildmat.2020.118917
[6]  罗银剑, 李秀地, 蔡涛, 杨谨鸿. ECC冲击压缩力学特性及耗能机制的试验研究[J]. 振动与冲击, 2023, 42(4): 19-27 64.
[7]  李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 53-58.
[8]  张品乐, 曾靖渊, 胡静, 朱昊天, 陶忠. 钢-PVA混杂纤维水泥基复合材料抗压力学性能及经济性研究[J]. 硅酸盐通报, 2023, 42(11): 3827-3835.
[9]  Zhou, Y.W., Xi, B., Yu, Q., Sui, L.L. and Xing, F. (2018) Mechanical Properties of Hybrid Ultra-High Performance Engineered Cementitous Composites Incorporating Steel and Polyethylene Fibers. Materials, 11, Article 1448.
https://doi.org/10.3390/ma11081448
[10]  Liu, D.W., Yu, J.Q., Qin, F.J., Zhang, K.S. and Zhang, Z.G. (2023) Mechanical Performance of High-Strength Engineering Cementitious Composites (ECC) with Hybriding PE and Steel Fibers. Case Studies in Construction Materials, 18, e01961.
https://doi.org/10.1016/j.cscm.2023.e01961
[11]  Huo, Y.L., Liu, T.N., Lu, D., Han, X.Y., Sun, H.Y., Huang, J.G., Ye, X.B., Zhang, C.C., Chen, Z.T. and Yang, Y.Z. (2023) Dynamic Tensile Properties of Steel Fiber Reinforced Polyethylene Fiber-Engineered/Strain-Hardening Cementitious Composites (PE-ECC/SHCC) at High Strain Rate. Cement and Concrete Composites, 143, Article ID: 105234.
https://doi.org/10.1016/j.cemconcomp.2023.105234
[12]  闫东明, 林皋. 不同初始静态荷载下混凝土动态抗压特性试验研究[J]. 水利学报, 2006, 37(3): 360-364.
[13]  闫东明, 林皋, 王哲. 变幅循环荷载作用下混凝土的单轴拉伸特性[J]. 水利学报, 2005, 36(5): 593-597.
[14]  郑丹, 李庆斌. 初始静荷载下的混凝土动力强度研究[J]. 水利与建筑工程学报, 2009, 7(3): 23-26.
[15]  Zheng, D., Li, Q.B. and Wang, L.B. (2007) Rate Effect of Concrete Strength under Initial Static Loading. Engineering Fracture Mechanics, 74, 2311-2319.
https://doi.org/10.1016/j.engfracmech.2006.11.012
[16]  马怀发, 陈厚群, 黎保琨. 应变率效应对混凝土动弯拉强度的影响[J]. 水利学报, 2005, 36(1): 69-76.
[17]  马怀发, 陈厚群, 徐树峰. 预静载作用下混凝土动态强度数值分析[J]. 水利学报, 2012, 43(z1): 37-45.
[18]  马怀发, 陈厚群, 黎保琨. 预静载作用下混凝土梁的动弯拉强度[J]. 中国水利水电科学研究院学报, 2005, 3(3): 168-172 178.
[19]  宋玉普, 吕培印, 侯景鹏. 有侧压混凝土的变速率劈拉强度试验及其破坏准则研究[J]. 水利学报, 2002(3): 1-5.
[20]  Jin, L., Yu, W.X. and Du, X.L. (2020) Effect of Initial Static Load and Dynamic Load on Concrete Dynamic Compressive Failure. Journal of Materials in Civil Engineering, 32, Article ID: 04020351.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003439

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133