|
Pure Mathematics 2024
时间周期双稳型反应扩散方程解的长时间行为
|
Abstract:
本文研究以下一类时间周期反应扩散方程ut=uxxuxf(t,u),?x∈R,?t>0.的解的长时间渐近行为,其中,f(t,u)是满足双稳型条件且t具有周期性。将通过引入辅助函数,构造适当的上下解,再运用比较原理,可以得到方程解在无穷远处的性质。
This paper focuses on a class of time-periodic reaction-diffusion equationsut=uxxuxf(t,u),?x∈R,?t>0.of solutions with long time asymptotic behaviour, wheref(t,u)satisfies the bistable condition and t is periodic. The properties of the solutions of the equation at infinity will be obtained by introducing auxiliary functions, constructing appropriate upper and lower solutions, and then applying the comparison principle.
[1] | Britton, N.F. (1986) Reaction-Diffusion Equations and Their Applications to Biology. Academic Press, London. |
[2] | Fife, P.C. (2013) Mathematical Aspects of Reacting and Diffusing Systems. Vol. 28. Springer Science & Business Media, Berlin, Heidelberg. |
[3] | Ma, S. and Zou, X. (2005) Existence, Uniqueness and Stability of Travelling Waves in a Discrete Reaction-Diffusion Monostable Equation with Delay. Journal of Differential Equations, 217, 54-87. https://doi.org/10.1016/j.jde.2005.05.004 |
[4] | Berestycki, H. and Nirenberg, L. (1992) Travelling Fronts in Cylinders. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 9, 497-572. https://doi.org/10.1016/s0294-1449(16)30229-3 |
[5] | 叶其孝, 李正元. 反应扩散方程引论[M]. 北京: 科学出版社, 1990. |
[6] | 王明新. 非线性抛物型方程[M]. 北京: 科学出版社, 1997. |
[7] | Guo, H. and Monobe, H. (2021) V-Shaped Fronts around an Obstacle. Mathematische Annalen, 379, 661-689. https://doi.org/10.1007/s00208-019-01944-y |
[8] | Hamel, F., Monneau, R. and Roquejoffre, J.M. (2005) Existence and Qualitative Properties of Multidimensional Conical Bistable Fronts. Discrete and Continuous Dynamical Systems-Series A, 13, 1069-1096. https://doi.org/10.3934/dcds.2005.13.1069 |
[9] | Xin, J.X. (1992) Multidimensional Stability of Traveling Waves in a Bistable Reaction-Diffusion Equation, I. Communications in Partial Differential Equations, 17, 1889-1899. https://doi.org/10.1080/03605309208820907 |
[10] | Levermore, C.D. and Xin, J.X. (1992) Multidimensional Stability of Traveling Waves in a Bistable Reaction-Diffusion Equation, II. Communications in Partial Differential Equations, 17, 1901-1924. https://doi.org/10.1080/03605309208820908 |
[11] | Fife, P.C. and McLeod, J.B. (1977) The Approach of Solutions of Nonlinear Diffusion Equations to Travelling Front Solutions. Archive for Rational Mechanics and Analysis, 65, 335-361. https://doi.org/10.1007/BF00250432 |
[12] | Uchiyama, K. (1985) Asymptotic Behavior of Solutions of Reaction-Diffusion Equations with Varying Drift Coefficients. Archive for Rational Mechanics and Analysis, 90, 291-311. https://doi.org/10.1007/BF00276293 |
[13] | Alikakos, N., Bates, P. and Chen, X. (1999) Periodic Traveling Waves and Locating Oscillating Patterns in Multidimensional Domains. Transactions of the American Mathematical Society, 351, 2777-2805. https://doi.org/10.1090/S0002-9947-99-02134-0 |