全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

时间周期双稳型反应扩散方程解的长时间行为
Long-Time Behavior of Solutions to the Time-Periodic Bistable Reaction-Diffusion Equation

DOI: 10.12677/pm.2024.145168, PP. 122-129

Keywords: 时间周期,长时间渐近行为,比较原理
Time-Periodic
, Long Time Asymptotic Behaviour, Comparison Principle

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究以下一类时间周期反应扩散方程ut=uxxuxf(t,u),?x∈R,?t>0.的解的长时间渐近行为,其中,f(t,u)是满足双稳型条件且t具有周期性。将通过引入辅助函数,构造适当的上下解,再运用比较原理,可以得到方程解在无穷远处的性质。
This paper focuses on a class of time-periodic reaction-diffusion equationsut=uxxuxf(t,u),?x∈R,?t>0.of solutions with long time asymptotic behaviour, wheref(t,u)satisfies the bistable condition and t is periodic. The properties of the solutions of the equation at infinity will be obtained by introducing auxiliary functions, constructing appropriate upper and lower solutions, and then applying the comparison principle.

References

[1]  Britton, N.F. (1986) Reaction-Diffusion Equations and Their Applications to Biology. Academic Press, London.
[2]  Fife, P.C. (2013) Mathematical Aspects of Reacting and Diffusing Systems. Vol. 28. Springer Science & Business Media, Berlin, Heidelberg.
[3]  Ma, S. and Zou, X. (2005) Existence, Uniqueness and Stability of Travelling Waves in a Discrete Reaction-Diffusion Monostable Equation with Delay. Journal of Differential Equations, 217, 54-87.
https://doi.org/10.1016/j.jde.2005.05.004
[4]  Berestycki, H. and Nirenberg, L. (1992) Travelling Fronts in Cylinders. Annales de lInstitut Henri Poincaré C, Analyse non linéaire, 9, 497-572.
https://doi.org/10.1016/s0294-1449(16)30229-3
[5]  叶其孝, 李正元. 反应扩散方程引论[M]. 北京: 科学出版社, 1990.
[6]  王明新. 非线性抛物型方程[M]. 北京: 科学出版社, 1997.
[7]  Guo, H. and Monobe, H. (2021) V-Shaped Fronts around an Obstacle. Mathematische Annalen, 379, 661-689.
https://doi.org/10.1007/s00208-019-01944-y
[8]  Hamel, F., Monneau, R. and Roquejoffre, J.M. (2005) Existence and Qualitative Properties of Multidimensional Conical Bistable Fronts. Discrete and Continuous Dynamical Systems-Series A, 13, 1069-1096.
https://doi.org/10.3934/dcds.2005.13.1069
[9]  Xin, J.X. (1992) Multidimensional Stability of Traveling Waves in a Bistable Reaction-Diffusion Equation, I. Communications in Partial Differential Equations, 17, 1889-1899.
https://doi.org/10.1080/03605309208820907
[10]  Levermore, C.D. and Xin, J.X. (1992) Multidimensional Stability of Traveling Waves in a Bistable Reaction-Diffusion Equation, II. Communications in Partial Differential Equations, 17, 1901-1924.
https://doi.org/10.1080/03605309208820908
[11]  Fife, P.C. and McLeod, J.B. (1977) The Approach of Solutions of Nonlinear Diffusion Equations to Travelling Front Solutions. Archive for Rational Mechanics and Analysis, 65, 335-361.
https://doi.org/10.1007/BF00250432
[12]  Uchiyama, K. (1985) Asymptotic Behavior of Solutions of Reaction-Diffusion Equations with Varying Drift Coefficients. Archive for Rational Mechanics and Analysis, 90, 291-311.
https://doi.org/10.1007/BF00276293
[13]  Alikakos, N., Bates, P. and Chen, X. (1999) Periodic Traveling Waves and Locating Oscillating Patterns in Multidimensional Domains. Transactions of the American Mathematical Society, 351, 2777-2805.
https://doi.org/10.1090/S0002-9947-99-02134-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133