全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ashtekar-Kodama Gravity as a Classical and Quantum Extension of Loop Quantum Gravity

DOI: 10.4236/jmp.2024.156038, PP. 864-937

Keywords: Quantum Gravity, Loop Quantum Gravity, General Relativity, Gravitational Wave, Gauge Field Theory, Graviton, Hamiltonian Constraint, Gaussian Constraint, Diffeomorphism Constraint

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a new theory of gravity, called here Ashtekar-Kodama (AK) gravity, which is based on the Ashtekar-Kodama formulation of loop quantum gravity (LQG), yields in the limit the Einstein equations, and in the quantum regime a full renormalizable quantum gauge field theory. The three fundamental constraints (hamiltonian, gaussian and diffeomorphism) were formulated in 3-dimensional spatial form within LQG in Ashtekar formulation using the notion of the Kodama state with positive cosmological constant Λ. We introduce a 4-dimensional covariant version of the 3-dimensional (spatial) hamiltonian, gaussian and diffeomorphism constraints of LQG. We obtain 32 partial differential equations for the 16 variables Emn (E-tensor, inverse densitized tetrad of the metric) and 16 variables Amn (A-tensor, gravitational wave tensor). We impose the boundary condition: for large distance the E-generated metric g(E) becomes the GR-metric g (normally Schwarzschild-spacetime). The theory based on these Ashtekar-Kodama (AK) equations, and called in the following Ashtekar-Kodama (AK-) gravity has the following properties. • For Λ = 0 the AK equations become Einstein equations, A-tensor is trivial (constant), and the E-generated metric g(E) is identical with the GR-metric g. • When the AK-equations are developed into a Λ-power series, the Λ-term yields a gravitational wave equation, which has only at least quadrupole wave solutions and becomes in the limit of large distance r the (normal electromagnetic) wave equation. • AK-gravity, as opposed to GR, has no singularity at the horizon: the singularity in the metric becomes a (very high) peak. • AK-gravity has a limit scale of the gravitational quantum region 39 μm, which emerges as the limit scale in the objective wave collapse theory of Gherardi-Rimini-Weber. In the quantum region, the AK-gravity becomes a quantum gauge theory (AK quantum gravity) with the Lie group extended SU(2) = ε-tensor-group(four generators) as gauge group and a corresponding covariant derivative. • AK quantum gravity is fully

References

[1]  Bjorken, J.D. and Drell, S.D. (1964) Relativistic Quantum Mechanics. McGraw-Hill, New York.
[2]  Quang, H.-K. (1998) Elementary Particles and Their Interactions. Springer, Berlin.
[3]  Kaku, M. (1993) Quantum Field Theory. Oxford University Press, Oxford.
[4]  Kiefer, C. (2012) Quantum Gravity. Oxford University Press, Oxford.
https://doi.org/10.1093/oxfordhb/9780199298204.003.0024
[5]  Kalka, H. and Soff, G. (1997) Supersymmetrie. B.G. Teubner, Stuttgart.
https://doi.org/10.1007/978-3-322-96701-5
[6]  Van Nieuwenhuizen, P. (1981) Physics Reports, 68, 189-398.
https://doi.org/10.1016/0370-1573(81)90157-5
[7]  Thiemann, T. (2002) Lectures on Loop Quantum Gravity. MPI Gravitations Physik AEI-2002-087.
[8]  Nicolai, H., Peeters, K. and Zamaklar, M. (2005) Classical and Quantum Gravity, 22, R193.
https://doi.org/10.1088/0264-9381/22/19/R01
[9]  Fliessbach, T. (1990) Allgemeine Relativitätstheorie. Bibliographisches Institut, Leipzig.
[10]  Wüthrich, C. (2006) Approaching the Planck Scale from a General Relativistic Point of View. Thesis, University of Pittsburgh, Pittsburgh.
[11]  Wetterich, Ch. (2019) Physik-Journal, 8, 67. (In German)
[12]  Van Hees, H. (2016) General Relativity. Lecture University, Frankfurt.
[13]  Smolin, L. (2002) Quantum Gravity with a Positive Cosmological Constant.
[14]  Helm, J. (2022) Journal of High Energy Physics, Gravitation and Cosmology, 8, 724-767.
[15]  Helm, J. (2022) Journal of High Energy Physics, Gravitation and Cosmology, 8, 457-485.
[16]  Hersch, M. (2017) The Wheeler-DeWitt Equation.
https://wordpress.com
[17]  Arnowitt, R., Deser, S. and Misner, C. (1959) Physical Review, 116, 1322-1330.
https://doi.org/10.1103/PhysRev.116.1322
[18]  Kuchar, K. (1981) Canonical Methods of Quantization, Quantum Gravity Second Symposium. Oxford University Press, Oxford.
[19]  Vey, D. (2013) Gravity, Self Duality, BF Theory. Lecture Notes, Paris.
[20]  Smolin, L. and Speziale, S. (2010) Physical Review D, 81, Article ID: 024032.
https://doi.org/10.1103/PhysRevD.81.024032
[21]  Smolin, L. (2008) Physical Review D, 80, Article ID: 124017.
https://doi.org/10.1103/PhysRevD.80.124017
[22]  Durka, R. (2010) Constrained BF Theory as Gravity. Max Born Symposium.
[23]  Celada, M., et al. (2016) Classical and Quantum Gravity, 33, Article ID: 213001.
https://doi.org/10.1088/0264-9381/33/21/213001
[24]  Ashtekar, A. (1986) Physical Review Letters, 57, 2244-2247.
https://doi.org/10.1103/PhysRevLett.57.2244
[25]  Rovelli, C. and Smolin, L. (1988) Physical Review Letters, 61, 1155-1158.
https://doi.org/10.1103/PhysRevLett.61.1155
[26]  Freidel, L. (2003) The Linearization of the Kodama State.
[27]  Kodama, H. (1990) Physical Review D, 42, 2548-2565.
https://doi.org/10.1103/PhysRevD.42.2548
[28]  Gielen, S. and Oriti, D. (2010) Classical and Quantum Gravity, 27, Article ID: 185017.
https://doi.org/10.1088/0264-9381/27/18/185017
[29]  Yoon, S. (2019) From Lagrangian to Hamiltonian Formulations of the Palatini Action.
[30]  Chandrasekhar, S. (1992) The Mathematical Theory of Black Holes. Oxford University Press, Oxford.
[31]  Visser, M. (2008) The Kerr Spacetime: A Brief Introduction.
[32]  Helm, J. (2020) Mathematica-Notebook WdWcov4Thnceta.nb: Calculation and Derivation of AK-Gravity.
https://www.researchgate.net
[33]  Helm, J. (2020) Mathematica-Notebook PhysExt.nb: Physics in Non-Lorentzian Metrics.
https://www.researchgate.net
[34]  Helm, J. (2021) A Covariant Formulation of the Ashtekar-Kodama Quantum Gravity and Its Solutions.
https://www.researchgate.net
[35]  Abedi, J., et al. (2017) Echoes from the Abyss.
[36]  Helm, J. (2017) An Approximate Kerr GR-Solution for the Relativistic Rotator.
https://www.researchgate.net
[37]  Helm, J. (2023) Mathematica-Notebook GenRel.nb: General Relativity.
https://www.researchgate.net
[38]  Helm, J. (2020) Mathematica-Notebook QFTFeynDiag.nb: Calculation and Derivation of Compton Cross-Section for AK-Gravity.
https://www.researchgate.net
[39]  Penrose, R. (1996) General Relativity and Gravitation, 28, 581-600.
https://doi.org/10.1007/BF02105068
[40]  Bassi, A., et al. (2017) Improved Non-Parametric Test of Collapse Models.
[41]  Helm, J. (2023) Journal of Modern Physics, 15, 193-238.
https://www.researchgate.net
https://doi.org/10.4236/jmp.2024.152011
[42]  Kotler, S., et al. (2021) Science, 372, 622-625.
[43]  Becker, R. (1966) Theorie der Wärme. Springer, Berlin.
https://doi.org/10.1007/978-3-662-30210-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133