全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类具有藻毒素动态影响的水域生态模型的动力学问题研究
Study on the Dynamics of an Aquatic Ecological Model with Dynamic Effects of Algo Toxins

DOI: 10.12677/aam.2024.135188, PP. 2000-2019

Keywords: 藻毒素,生态模型,平衡点,稳定性,Hopf分岔
Algal Toxins
, Ecological Model, Equilibrium Point, Stability, Hopf Bifurcation

Full-Text   Cite this paper   Add to My Lib

Abstract:

在考虑水域中的藻毒素是变量的情况下,构建一类具有藻毒素动态影响的水域生态模型,探索藻毒素对产毒藻类与鱼类生长共存模式的影响机制。数学理论工作主要调查了模型平衡点的存在性、稳定性和Hopf分岔动力学行为,推导出模型诱发Hopf分岔的临界条件。数值模拟工作既验证了理论推导结果的有效性,又阐明模型分岔动力学行为的演化特性,并揭示了过高或过低的藻毒素接触率参数将会导致产毒藻类种群和鱼类种群从常稳态持久生存模式变为周期振荡共存模式。总而言之,希望这些研究结果既有利于促进藻鱼生态系统研究的快速发展,又可为生物操纵控藻技术的应用提供一定的理论基础。
Considering that algal toxins in water were variable, an aquatic ecological model with dynamic effects of algal toxins was constructed, which could explore the impact mechanism of algal toxins on the growth coexistence mode of toxin producing algae and fish. The mathematical theory work mainly investigated the existence, stability, and Hopf bifurcation dynamic behavior of model equilibrium points, and derived the critical conditions for the model to induce Hopf bifurcation. The numerical simulation work not only verified the effectiveness of the theoretical derivation results, but also elucidated the evolutionary characteristics of the bifurcation dynamics behavior of the model, and revealed that excessively high or low algal toxin exposure rates would cause the toxic algal population and fish population to shift from a stable coexistence mode to a cyclic oscillation mode. In conclusion, it was hoped that these research results would not only promote the rapid development of algae fish ecosystem research, but also provide a theoretical basis for the application of biological manipulation algae control technology.

References

[1]  Abdllaoui, A.E., Chattopadhyay, J. and Arino, O. (2002) Comparisons, by Models, of Some Basic Mechanisms Acting on the Dynamics of the Zooplankton-Toxic Phytoplankton Systems. Mathematical Models and Methods in Applied Sciences, 12, 1421-1451.
https://doi.org/10.1142/S0218202502002185
[2]  Odum, E.P. (1971) Fundamentals of Ecology. Saunders, Philadelphia.
[3]  Duinker, J. and Wefer, G. (1994) Das CO2-Problem und Die Rolle des Ozeans. Naturwissenschahten, 81, 237-242.
https://doi.org/10.1007/s001140050064
[4]  Smayda, T. (1997) What Is a Bloom? A Commentary. Limnology and Oceanography, 42, 1132-1136.
https://doi.org/10.4319/lo.1997.42.5_part_2.1132
[5]  Gupta, R. and Chandra, P. (2013) Bifurcation Analysis of Modified Leslie-Gower Predator-Prey Model with Michaelis-Menten Type Prey Harvesting. Journal of Mathematical Analysis and Applications, 398, 278-295.
https://doi.org/10.1016/j.jmaa.2012.08.057
[6]  Gupta, R., Banerjee, M. and Chandra, P. (2012) Bifurcation Analysis and Control of Leslie-Gower Predator-Prey Model with Michaelis-Menten Type Prey Harvesting. Differential Equations and Dynamical Systems, 20, 339-336.
https://doi.org/10.1007/s12591-012-0142-6
[7]  Gupta, R., Chandra, P. and Banerjee, M. (2015) Dynamical Complexity of a Prey-Predator Model with Non-Linear Predator Harvesting. Discrete and Continuous Dynamical Systems Series B, 20, 423-443.
[8]  Ruan, S. and Xiao, D. (2001) Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response. SIAM Journal on Applied Mathematics, 61, 1445-1472.
https://doi.org/10.1137/S0036139999361896
[9]  Lv, Y., Pei, Y. and Wang, Y. (2019) Bifurcations and Simulations of Two Predator-Prey Models with Nonlinear Harvesting. Chaos, Solitons and Fractals, 120, 158-170.
https://doi.org/10.1016/j.chaos.2018.12.038
[10]  Chattopadhyay, J., Sarkar, R.R. and Mandal, S. (2002) Toxin Producing Plankton May Act as a Biological Control for Planktonic Blooms: A Field Study and Mathematical Modelling. Journal of Theoretical Biology, 215, 333-344.
https://doi.org/10.1006/jtbi.2001.2510
[11]  Saha, T. and Bandyopadhyay, M. (2009) Dynamical Analysis of Toxin Producing Phytoplankton-Zooplankton Interactions. Nonlinear Analysis: Real World Applications, 10, 314-332.
https://doi.org/10.1016/j.nonrwa.2007.09.001
[12]  Rana, S., Samanta, S., Bhattacharya, S., Al-Khaled, K., Goswami, A. and Chattopadhyay, J. (2015) The Effect of Nanoparticles on Plankton Dynamics: A Mathematical Model. Biosystems, 127, 28-41.
https://doi.org/10.1016/j.biosystems.2014.11.003
[13]  Hossain, M., Pati, N.C., Pal, S., et al. (2021) Bifurcations and Multistability in a Food Chain Model with Nanoparticles. Mathematics and Computers in Simulation, 190, 808-825.
https://doi.org/10.1016/j.matcom.2021.06.017
[14]  Anderson, D.M., et al. (1993) Marine Biotoxins and Harmful Algae: A National Plan. Woods Hole Oceanographic Institution, Woods Hole, 93-102.
https://doi.org/10.1575/1912/614
[15]  Buskey, E.J. and Hyatt, C.J. (1995) Effects of the Texas (USA) Brown Tide Alga on Planktonic Grazers. Marine Ecology Progress Series, 126, 285-292.
https://doi.org/10.3354/meps126285
[16]  Buskey, E.J. and Stockwell, D.A. (1993) Effects of a Persistent Brown Tide on Zooplankton Population in the Laguno Madre of Southern Texas. In: Smayda, T.J. and Shimuzu, Y., Eds., Toxic Phytoplankton Blooms in the Sea, Elsevier, Amsterdam, 659-666.
[17]  Sarkar, R.R. and Chattopadhyay, J. (2003) The Role of Environmental Stochasticity in a Toxic Phytoplanktonnon-Toxic Phytoplankton Zooplankton System. Environmetrics, 14, 775-792.
https://doi.org/10.1002/env.621
[18]  Chattopadhyay, J., Sarkar, R.R. and Abdllaoui, A. (2002) A Delay Differential Equation Model on Harmful Algal Blooms in the Presence of Toxic Substances. Mathematical Medicine and Biology: A Journal of the IMA, 19, 137-161.
https://doi.org/10.1093/imammb19.2.137
[19]  Ludwig, D., et al. (1978) Qualitative Analysis of an Insect Outbreak System: The Spruce Budworm and Forest. Journal of Animal Ecology, 47, 315-328.
https://doi.org/10.2307/3939
[20]  Panja, P., Mondal, S.K. and Jana, D.K. (2017) Effects of Toxicants on Phytoplankton-Zooplankton-Fish Dynamics and Harvesting. Chaos, Solitons and Fractals, 104, 389-399.
https://doi.org/10.1016/j.chaos.2017.08.036

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133