31 Plant Species against Blood Feeding and Disease Vectors Insects: Beyond Anti-Insect Properties, Unvalued Opportunities and Challenges for Health and Sustainability
Plants with bioactive properties are greatly useful in preventing and controlling blood-sucking and disease-vector invertebrates, particularly in developing countries and low-income communities. Their application is a promising alternative to synthetic compounds whose use remains a health, environmental, and economic challenge. However, many are still unknown and unvalued, while others are becoming ignored and threatened. The main objective of this ethnobotanical study is to identify and characterize indigenous and locally grown plants against blood-sucking and disease-vector insects. Salient opportunities and challenges of using these plants are documented and discussed. Semi-structured interviews, using a prepared questionnaire, were conducted with 228 informants. The consensus index (CI) was calculated to analyze the reliability of the collected information. The identified 31 anti-insect plant species belong to 20 botanical families, four morphological categories, and six habitat types. They can be categorized as insecticidal plants (42% of the total), insect repellent (42% of the total), and both insecticidal and insect repellent (16% of the total). More than 54% of these are still abundant in the study area, while about 35.5% have become rare and difficultly accessible. Based on the numerical importance of related anti-insect plant species, the seven targeted blood-sucking insects range in the following decreasing order: Jiggers (16 species) > Fire Ants (9 species) > Flies (8 plants) > Mosquitoes (4 species) > Fleas (2 species) > Bedbugs (1 species) > lice (0 species). The three most commonly used plants, with the highest confirmation indices, are Tetradenia riparia (ICs = 0.712), Eucalyptus globulus subsp. maidenii (ICs = 0.302), and Solanum aculeastrum (ICs = 0.288). The antimicrobial role of many locally grown anti-insect plants and the multiple other associated valorization possibilities are ignored by most informants. Domesticating, propagating, protecting, and promoting the sustainable use of these plants would be an appropriate route for their conservation and continued availability.
References
[1]
Delaunay, P., et al. (2011) Bedbugs and Infectious Diseases. Clinical Infectious Diseases, 52, 200-210. https://doi.org/10.1093/cid/ciq102
[2]
Solley, G.O. (2004) Stinging and Biting Insect Allergy: An Australian Experience. Annals of Allergy, Asthma & Immunology, 93, 532-537. https://doi.org/10.1016/S1081-1206(10)61259-8
[3]
Sarwar, M. (2015) Insect Vectors Involving in Mechanical Transmission of Human Pathogens for Serious Diseases. International Journal of Bioinformatics and Biomedical Engineering, 1, 300-306.
[4]
Blazar, J., Allard, M. and Lienau, E.K. (2011) Insects as Vectors of Foodborne Pathogenic Bacteria. Terrestrial Arthropod Reviews, 4, 5-16.
[5]
Laroche, M., Raoult, D. and Parola, P. (2018) Insects and the Transmission of Bacterial Agents. Microbiology Spectrum, 6, Article MTBP-0017-2016. https://doi.org/10.1128/microbiolspec.MTBP-0017-2016
[6]
World Health Organization (2020) Ethics and Vector-Borne Diseases: WHO Guidance. WHO, Geneva.
[7]
Ministry of Public Health of the Republic of Burundi (2004) Politique nationale de la santé publique 2005-2015.
[8]
Nicoletti, M., Murugan, K. and Benelli, G. (2016) Emerging Insect-Borne Diseases of Agricultural, Medical and Veterinary Importance. In: Trdan, S., Ed., Insecticides Resistance, IntechOpen, Rijeka, 219-243. https://doi.org/10.5772/61467
[9]
Belluco, S., et al. (2023) Insects and Public Health: An Overview. Insects, 14, Article 240. https://doi.org/10.3390/insects14030240
[10]
World Health Organization (2020) Evaluation of Genetically Modified Mosquitoes for the Control of Vector-Borne Diseases: Position Statement. WHO Press, Geneva.
[11]
Laban, L.T., et al. (2015) Experimental Therapeutic Studies of Solanum aculeastrum Dunal. On Leishmania major Infection in BALB/c Mice. Iranian Journal of Basic Medical Sciences, 18, 64-71.
[12]
Bonnefoy, X., Kampen, H. and Sweeney, K. (2008) Public Health Significance of Urban Pests. World Health Organization, Geneva.
[13]
Salhi, S., Fadli, M., Zidane, L. and Douira, A. (2010) Etudes floristique et ethnobotanique des plantes médicinales de la ville de Kénitra (Maroc). Lazaroa, 31, 133-143. https://doi.org/10.5209/rev_LAZA.2010.v31.9
[14]
Ngene, J.-P., et al. (2015) Importance dans la pharmacopée traditionnelle des plantes à flavonoïdes vendues dans les marchés de Douala est (Cameroun). Journal of Applied Biosciences, 88, 8194-8210. https://doi.org/10.4314/jab.v88i1.6
[15]
Eisah, J.S., Nyumah, F., Johnny, J. and Charles, J.F. (2021) Ethnobotanical Studies on the Use of Medicinal Plants among Forest Fringe Communities around the Kasewe Forest in Moyamba District, Southern Sierra Leone. American Journal of Plant Sciences, 12, 1963-1989. https://doi.org/10.4236/ajps.2021.1212135
[16]
Shosan, L.O., Fawibe, O.O., Ajiboye, A.A., Abeegunrin, T.A. and Agboola, D.A. (2014) Ethnobotanical Survey of Medicinal Plants Used in Curing Some Diseases in Infants in Abeokuta South Local Government Area of Ogun State, Nigeria. American Journal of Plant Sciences, 5, 3258-3268. https://doi.org/10.4236/ajps.2014.521340
[17]
United Nations (2020) Consolidating Gains and Accelerating Efforts to Control and Eliminate Malaria in Developing Countries, Particularly in Africa, by 2030. General Assembly Resolution A/RES/74/305. New York.
[18]
Shalukoma, C., et al. (2015) Les plantes médicinales de la région montagneuse de Kahuzi-Biega en République Démocratique du Congo: Utilisation, accessibilité et consensus des tradipraticiens. Bois et Forêts des Tropiques, 326, 43-55. https://doi.org/10.19182/bft2015.326.a31282
[19]
Djogbénou, L., Pasteur, N., Akogbéto, M., Weill, M. and Chandre, F. (2011) Insecticide Resistance in the Anopheles gambiae Complex in Benin: A Nationwide Survey. Medical and Veterinary Entomology, 25, 256-267. https://doi.org/10.1111/j.1365-2915.2010.00925.x
[20]
Elzen, G.W. and Hardee, D.D. (2003) United States Department of Agriculture-Agricultural Research Service Research on Managing Insect Resistance to Insecticides. Pest Management Science, 59, 770-776. https://doi.org/10.1002/ps.659
[21]
López, Ó., Fernández-Bolaños, J.G. and Gil, M.V. (2005) New Trends in Pest Control: The Search for Greener Insecticides. Green Chemistry, 7, 431-442. https://doi.org/10.1039/b500733j
[22]
Arya, S., Kumar, R., Prakash, O., Rawat, A. and Pant, A.K. (2022) Impact of Insecticides on Soil and Environment and Their Management Strategies. In: Naeem, M., Bremont, J.F.J., Ansari, A.A. and Gill, S.S., Eds., Agrochemicals in Soil and Environment: Impacts and Remediation, Springer, Singapore, 213-230. https://doi.org/10.1007/978-981-16-9310-6_10
[23]
He, B., Chang, P., Zhang, S. and Zhu, X. (2022) A Design Approach to Eliminate the Toxic Effect of Insecticides to Ensure Human Safety. Green Chemistry, 24, 3667-3676. https://doi.org/10.1039/D1GC04636E
[24]
Gutiérrez-Jara, J.P., Vogt-Geisse, K. and Cabrera, M. (2022) Collateral Effects of Insecticide-Treated Nets on Human and Environmental Safety in an Epidemiological Model for Malaria with Human Risk Perception. International Journal of Environmental Research and Public Health, 19, Article 16327. https://doi.org/10.3390/ijerph192316327
[25]
Deveci, H.A., et al. (2021) An Overview of the Biochemical and Histopathological Effects of Insecticides. In: Ranz, R.E.R., Ed., Insecticides-Impact and Benefits of Its Use for Humanity, IntechOpen, Rijeka, 1-18.
[26]
Institutn des Statistiques et d’Etudes Economiques du Burundi (ISTEEBU) (2017) Projection demographiques 2010-2050 Niveaau National et Provincial Burundi. Bujumbura.
[27]
Nzigidahera, B. (2012) Description du Burundi: Aspects physiques. Bujumbura.
[28]
Republic of Burundi, Ministry for Land Management, Tourism and Environment. (20074) National Adaptation Plan of Action 2007.
[29]
Masengo, C., et al., (2021) Étude ethnobotanique quantitative et valeur socioculturelle de Lippia multiflora Moldenke (Verbenaceae) à Kinshasa, République Démocratique du Congo. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 9, 93-101.
[30]
Ngbolua, K.-T.-N., Mihigo, S.O., Inkoto, C.L. and Ashande, C.M. (2016) Ethno-Botanical Survey of Plant Species Used in Traditional Medicine in Kinshasa City (Democratic Republic of the Congo). Tropical Plant Research, 3, 413-427.
[31]
Bayeli, G.I., Joiris, V., Lohandjola, G.N. and Habari, J.-P. (2019) Contribution à l’étude des plantes médicinales utilisées dans le traitement des abcès dans le territoire de Bikoro, province de l’Equateur en RDC. International Journal of Biological and Chemical Sciences, 13, 353-368. https://doi.org/10.4314/ijbcs.v13i1.28
[32]
Sylla, Y., Silue, D.K., Ouattara, K. and Kone, M.W. (2018) Etude ethnobotanique des plantes utilisées contre le paludisme par les tradithérapeutes et herboristes dans le district d’Abidjan (Côte d’Ivoire). International Journal of Biological and Chemical Sciences, 12, 1380-1400. https://doi.org/10.4314/ijbcs.v12i3.25
[33]
El Alami, A., Farouk, L. and Chait, A. (2016) Etude ethnobotanique sur les plantes médicinales spontanées poussant dans le versant nord de l’Atlas d’Azilal (Maroc). Algerian Journal of Natural Products, 4, 271-282.
[34]
Chaachouay, N., Benkhnigue, O. and Zidane, L. (2020) Ethnobotanical Study Aimed at Investigating the Use of Medicinal Plants to Treat Nervous System Diseases in the Rif of Morocco. Journal of Chiropractic Medicine, 19, 70-81. https://doi.org/10.1016/j.jcm.2020.02.004
[35]
Teklehaymanot, T. (2009) Ethnobotanical Study of Knowledge and Medicinal Plants Use by the People in Dek Island in Ethiopia. Journal of Ethnopharmacology, 124, 69-78. https://doi.org/10.1016/j.jep.2009.04.005
[36]
Assefa, B., Megersa, M. and Jima, T.T. (2021) Ethnobotanical Study of Medicinal Plants Used to Treat Human Diseases in Gura Damole District, Bale Zone, Southeast Ethiopia. Asian Journal of Ethnobiology, 4, 42-52. https://doi.org/10.13057/asianjethnobiol/y040105
[37]
Degu, S., et al. (2020) Medicinal Plants that Used as Repellent, Insecticide and Larvicide in Ethiopia. Pharmacy & Pharmacology International Journal, 8, 274-283. https://doi.org/10.15406/ppij.2020.08.00306
[38]
Adelaja, O.J., Oduola, A.O., Abiodun, O.O., Adeneye, A.K. and Obembe, A. (2021) Plants with Insecticidal Potential Used by Ethnic Groups in North-Central Nigeria for the Management of Hematophagous Insects. Asian Journal of Ethnobiology, 4, 65-75. https://doi.org/10.13057/asianjethnobiol/y040201
[39]
Kouadio, B., et al. (2016) Étude ethnobotanique des plantes médicinales utilisées dans le Département de Transua, District du Zanzan (Côte d’Ivoire). Journal of Animal &Plant Sciences, 27, 4230-4250.
[40]
Youmsi, R.D.F., et al. (2017) Ethnobotanical Survey of Medicinal Plants Used as Insects Repellents in Six Malaria Endemic Localities of Cameroon. Journal of Ethnobiology and Ethnomedicine, 13, Article No. 33. https://doi.org/10.1186/s13002-017-0155-x
[41]
Doggett, S.L., Dwyer, D.E., Peñas, P.F. and Russell, R.C. (2012) Bed Bugs: Clinical Relevance and Control Options. Clinical Microbiology Reviews, 25, 164-192. https://doi.org/10.1128/CMR.05015-11
[42]
Raoult, D., et al. (1998) Outbreak of Epidemic Typhus Associated with Trench Fever in Burundi. The Lancet, 352, 353-358. https://doi.org/10.1016/S0140-6736(97)12433-3
[43]
(1997) A Large Outbreak of Epidemic Louse-Borne Typhus in Burundi. Weekly Epidemiological Record=Releve Epidemiologique Hebdomadaire, 72, 152-153.
[44]
Ouarti, B., et al. (2023) Lice and Lice-Borne Diseases in Humans in Africa: A Narrative Review. Acta Tropica, 237, Article 106709. https://doi.org/10.1016/j.actatropica.2022.106709
[45]
Fournier, P.-E., et al. (2002) Human Pathogens in Body and Head Lice. Emerging Infectious Diseases, 8, 1515-1518. https://doi.org/10.3201/eid0812.020111
[46]
Lai, O., Ho, D., Glick, S. and Jagdeo, J. (2016) Bed Bugs and Possible Transmission of Human Pathogens: A Systematic Review. Archives of Dermatological Research, 308, 531-538. https://doi.org/10.1007/s00403-016-1661-8
[47]
Davies, T.G.E., Field, L.M. and Williamson, M.S. (2012) The Re-Emergence of the Bed Bug as a Nuisance Pest: Implications of Resistance to the Pyrethroid Insecticides. Medical and Veterinary Entomology, 26, 241-254. https://doi.org/10.1111/j.1365-2915.2011.01006.x
[48]
Alarcon, W.A., et al. (2005) Acute Illnesses Associated with Pesticide Exposure at Schools. JAMA, 294, 455-465. https://doi.org/10.1001/jama.294.4.455
[49]
Reinhardt, K. and Siva-Jothy, M.T. (2007) Biology of the Bed Bugs (Cimicidae). Annual Review of Entomology, 52, 351-374. https://doi.org/10.1146/annurev.ento.52.040306.133913
[50]
Chen, Y.-K., et al. (2012) Phenolic Compounds from Nicotiana tabacum and Their Biological Activities. Journal of Asian Natural Products Research, 14, 450-456. https://doi.org/10.1080/10286020.2012.669578
[51]
Al-Lahham, S., et al. (2020) Antioxidant, Antimicrobial and Cytotoxic Properties of Four Different Extracts Derived from the Roots of Nicotiana tabacum L. European Journal of Integrative Medicine, 33, Article 101039. https://doi.org/10.1016/j.eujim.2019.101039
[52]
Wang, H., et al. (2008) Identification of Polyphenols in Tobacco Leaf and Their Antioxidant and Antimicrobial Activities. Food Chemistry, 107, 1399-1406. https://doi.org/10.1016/j.foodchem.2007.09.068
[53]
Pavia, C.S., Pierre, A. and Nowakowski, J. (2000) Antimicrobial Activity of Nicotine against a Spectrum of Bacterial and Fungal Pathogens. Journal of Medical Microbiology, 49, 675-676. https://doi.org/10.1099/0022-1317-49-7-675
[54]
Lourenco, M.C., et al. (2007) Evaluation of Anti-Tubercular Activity of Nicotinic and Isoniazid Analogues. Arkivoc, 15, 181-191. https://doi.org/10.3998/ark.5550190.0008.f18
[55]
Rahayu, L.O., Wijayanti, E.D., Pratidina, F.I. and Ayuningtyas, V.S. (2023) Antimicrobial Activity of Tobacco Flower Extract (Nicotiana tabacum L.) in Various Solvent. JSMARTech: Journal of Smart Bioprospecting and Technology, 4, 67-71. https://doi.org/10.21776/ub.jsmartech.2023.004.02.67
[56]
Putri, D.A., et al. (2022) Secondary Metabolites of Nicotiana tabacum and Their Biological Activities: A Review. Journal of Pure & Applied Chemistry Research, 11, 149-165. https://doi.org/10.21776/ub.jpacr.2022.11.02.646
[57]
Anumudu, C.K., Nwachukwu, M.I., Obasi, C.C., Nwachukwu, I.O. and Ihenetu, F.C. (2019) Antimicrobial Activities of Extracts of Tobacco Leaf (Nicotiana tabacum) and Its Grounded Snuff (Utaba) on Candida albicans and Streptococcus pyogenes. Journal of Tropical Diseases, 7, Article 1000300.
[58]
Goddard, J. and Deshazo, R. (20090 Bed Bugs (Cimex lectularius) and Clinical Consequences of Their Bites. JAMA, 301, 1358-1366. https://doi.org/10.1001/jama.2009.405
[59]
Sheele, J.M., et al. (2021) Investigating the Association of Bed Bugs with Infectious Diseases: A Retrospective Case-Control Study. Heliyon, 7, E08107. https://doi.org/10.1016/j.heliyon.2021.e08107
[60]
Silverman, A.L., Qu, L.H., Blow, J., Zitron, I.M., Gordon, S.C. and Walker, E.D. (2001) Assessment of Hepatitis B Virus DNA and Hepatitis C Virus RNA in the Common Bedbug (Cimex lectularius L.) and Kissing Bug (Rodnius prolixus). The American Journal of Gastroenterology, 96, 2194-2198. https://doi.org/10.1111/j.1572-0241.2001.03955.x
[61]
Ameya, G., Manilal, A. and Merdekios, B. (2017) In vitro Antibacterial Activity and Phytochemical Analysis of Nicotiana tabacum L. Extracted in Different Organic Solvents. The Open Microbiology Journal, 11, 352-359. https://doi.org/10.2174/1874285801711010352
[62]
Agyare, C., Obiri, D.D., Boakye, Y.D. and Osafo, N. (2013) Anti-Inflammatory and Analgesic Activities of African Medicinal Plants. In: Kuete, V., Ed., Medicinal Plant Research in Africa, Elsevier, Amsterdam, 725-752. https://doi.org/10.1016/B978-0-12-405927-6.00019-9
[63]
Eshetu, G.R., et al. (2015) Ethnoveterinary Medicinal Plants: Preparation and Application Methods by Traditional Healers in Selected Districts of Southern Ethiopia. Veterinary World, 8, 674-684. https://doi.org/10.14202/vetworld.2015.674-684
[64]
Yigezu, Y., Haile, D.B. and Ayen, W.Y. (2014) Ethnoveterinary Medicines in Four Districts of Jimma Zone, Ethiopia: Cross Sectional Survey for Plant Species and Mode of Use. BMC Veterinary Research, 10, Article No. 76. https://doi.org/10.1186/1746-6148-10-76
[65]
Giday, M., Asfaw, Z. and Woldu, Z. (2010) Ethnomedicinal Study of Plants Used by Sheko Ethnic Group of Ethiopia. Journal of Ethnopharmacology, 132, 75-85. https://doi.org/10.1016/j.jep.2010.07.046
[66]
Arcury, T.A. and Quandt, S.A. (2006) Health and Social Impacts of Tobacco Production. Journal of Agromedicine, 11, 71-81. https://doi.org/10.1300/J096v11n03_08
[67]
Campaign for Tobacco-Free Kids (2001) Golden Leaf, Barren Harvest: The Costs of Tobacco Farming. eScholarship Publishing, San Francisco.
[68]
Yanda, P.Z. (2010) Impact of Small Scale Tobacco Growing on the Spatial and Temporal Distribution of Miombo Woodlands in Western Tanzania. JournalofEcologyand theNatural Environment, 2, 10-16.
[69]
Sinzinkayo, D., Baza, D., Gnanguenon, V. and Koepfli, C. (2021) The Lead-Up to Epidemic Transmission: Malaria Trends and Control Interventions in Burundi 2000 to 2019. Malaria Journal, 20, Article No. 298. https://doi.org/10.1186/s12936-021-03830-y
[70]
République du Burundi, Ministère de la Santé Publique et de Lutte contre le Sida. (2021) Résumé analytique du profil sanitaire du Burundi. Bujumbura, 65.
[71]
Ndoreraho, A., et al. (2020) Trends in Malaria Cases and Deaths: Assessing National Prevention and Control Progress in Burundi. The East African Health Research Journal, 4, 182. https://doi.org/10.24248/eahrj.v4i2.642
[72]
Mohanan, P., et al. (2022) Malaria and COVID-19: A Double Battle for Burundi. African Journal of Emergency Medicine, 12, 27-29. https://doi.org/10.1016/j.afjem.2021.10.006
[73]
World Health Organization (WHO) (2023) Country Disease Outbreak-Burundi.
[74]
Lucia, A., et al. (2009) Sensitivity of Aedes aegypti Adults (Diptera: Culicidae) to the Vapors of Eucalyptus essential Oils. Bioresource Technology, 100, 6083-6087. https://doi.org/10.1016/j.biortech.2009.02.075
[75]
Koziol, N. (2015) Huiles essentielles d’Eucalyptus globulus, d’Eucalyptus radiata et de Corymbia citriodora: Qualité, efficacité et toxicité. Ph.D. Thesis, Université de Lorraine, Nancy.
[76]
Batish, D.R., Singh, H.P., Kohli, R.K. and Kaur, S. (2008) Eucalyptus Essential Oil as a Natural Pesticide. Forest Ecology and Management, 256, 2166-2174. https://doi.org/10.1016/j.foreco.2008.08.008
[77]
Sugumar, S., et al. (2014) Ultrasonic Emulsification of Eucalyptus Oil Nanoemulsion: Antibacterial Activity against Staphylococcus aureus and Wound Healing Activity in Wistar Rats. Ultrasonics Sonochemistry, 21, 1044-1049. https://doi.org/10.1016/j.ultsonch.2013.10.021
[78]
ESCOP (2009) ESCOP Monographs. Second Edition, Thieme Group, New York.
[79]
Vilela, G.R., et al. (2009) Activity of Essential Oil and Its Major Compound, 1,8-Cineole, from Eucalyptus globulus Labill., against the Storage Fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. Journal of Stored Products Research, 45, 108-111. https://doi.org/10.1016/j.jspr.2008.10.006
[80]
López-Meneses, A.K., et al. (2015) Antifungal and Antimycotoxigenic Activity of Essential Oils from Eucalyptus globulus, Thymus capitatus and Schinus molle. Food Science and Technology, 35, 664-671. https://doi.org/10.1590/1678-457X.6732
[81]
Tan, M., Zhou, L., Huang, Y., Wang, Y., Hao, X. and Wang, J. (2008) Antimicrobial Activity of Globulol Isolated from the Fruits of Eucalyptus globulus Labill. Natural Product Research, 22, 569-575. https://doi.org/10.1080/14786410701592745
[82]
Elgorban, A.M., et al. (2015) In vitro Antifungal Activity of Some Plant Essential Oils. International Journal of Pharmacology, 11, 56-61. https://doi.org/10.3923/ijp.2015.56.61
[83]
Musyimi, D. and Ogur, J. (2008) Comparative Assessment of Antifungal Activity of Extracts from Eucalyptus globulus and Eucalyptus citriodora. Research Journal of Phytochemistry, 2, 35-43. https://doi.org/10.3923/rjphyto.2008.35.43
[84]
Tyagi, A.K. and Malik, A. (2011) Antimicrobial Potential and Chemical Composition of Eucalyptus globulus Oil in Liquid and Vapour Phase against Food Spoilage Microorganisms. Food Chemistry, 126, 228-235. https://doi.org/10.1016/j.foodchem.2010.11.002
[85]
Boukhatem, M.N., et al. (2020) Eucalyptus globulus Essential Oil as a Natural Food Preservative: Antioxidant, Antibacterial and Antifungal Properties in vitro and in a Real Food Matrix (Orangina Fruit Juice). Applied Sciences, 10, Article 5581. https://doi.org/10.3390/app10165581
[86]
Santos, F.A. and Rao, V.S.N. (2000) Antiinflammatory and Antinociceptive Effects of 1,8-Cineole a Terpenoid Oxide Present in Many Plant Essential Oils. Phytotherapy Research, 14, 240-244. https://doi.org/10.1002/1099-1573(200006)14:4<240::AID-PTR573>3.0.CO;2-X
[87]
Grafsmann, J., et al. (2000) Antioxidant Properties of Essential Oils. Possible Explanations for Their Anti-Inflammatory Effects. Arzneimittelforschung/Drug Research, 50, 135-139. https://doi.org/10.1055/s-0031-1300178
[88]
Nascimento, N.R.F., et al. (2009) 1,8-Cineole Induces Relaxation in Rat and Guinea-Pig Airway Smooth Muscle. Journal of Pharmacy and Pharmacology, 61, 361-366. https://doi.org/10.1211/jpp.61.03.0011
[89]
Mieres-Castro, D., Ahmar, S., Shabbir, R. and Mora-Poblete, F. (2021) Antiviral Activities of Eucalyptus Essential Oils: Their Effectiveness as Therapeutic Targets against Human Viruses. Pharmaceuticals, 14, Article 1210. https://doi.org/10.3390/ph14121210
[90]
Erau, P. (2019) L’eucalyptus: botanique, composition chimique, utilisation thérapeutique et conseil à l’officine. Ph.D. Thesis, Université d’Aix-Marseille, Marseille.
[91]
Brezáni, V., et al. (2018) Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus globulus Labill. Viruses, 10, Article 360. https://doi.org/10.3390/v10070360
[92]
Niculescu, A.-G. and Grumezescu, A.M. (2021) Natural Compounds for Preventing Ear, Nose, and Throat-Related Oral Infections. Plants, 10, Article 1847. https://doi.org/10.3390/plants10091847
[93]
Trouvilliez, J., Bouhot, L. and Guizol, P. (1987) Croissance des Eucalyptus au Burundi: Synthèse des essais 1977-1986. Institut des Sciences Agronomiques du Burundi, Bujumbura.
[94]
Nduwimana, A., et al. (2023) Regard critique sur les impacts socio-économiques et écologiques des peuplements d’eucalyptus au Burundi. Bois et Forêts des Tropiques, 357, 85-96. https://doi.org/10.19182/bft2023.357.a37103
[95]
Bangirinama, F.B., Nzitwanayo, B. and Hakizimana, P. (2016) Utilisation du charbon de bois comme principale source d’énergie de la population urbaine: Un sérieux problème pour la conservation du couvert forestier au Burundi. Bois et Forêts des Tropiques, 328, 45-53. https://doi.org/10.19182/bft2016.328.a31301
[96]
Gil, L., Tadesse, W., Tolosana, E. and López, R., Eds. (2010) Eucalyptus Species Management, History, Status and Trends in Ethiopia. UPM (Technical University of Madrid), EIAR (Ethiopian Institute of Agronomical Research) and ENCE. Madrid.
[97]
Oladeji, O.S., et al. (2019) Phytochemistry and Pharmacological Activities of Cymbopogon citratus: A Review. Scientific African, 6, e00137. https://doi.org/10.1016/j.sciaf.2019.e00137
[98]
Shah, G., et al. (2011) Scientific Basis for the Therapeutic Use of Cymbopogon citratus, Stapf (Lemon Grass). Journal of Advanced Pharmaceutical Technology & Research, 2, 3-8. https://doi.org/10.4103/2231-4040.79796
[99]
Aluyor, E. and Oboh, I. (2014) Preservatives: Traditional Preservatives-Vegetable Oils. In: Batt, C.A. and Tortorello, M.L., Eds., Encyclopedia of Food Microbiology, Elsevier, Amsterdam, 137-140. https://doi.org/10.1016/B978-0-12-384730-0.00263-9
[100]
Hanifah, A.L., et al. (2011) Acaricidal Activity of Cymbopogon citratus and Azadirachta indica against House Dust Mites. Asian Pacific Journal of Tropical Biomedicine, 1, 365-369. https://doi.org/10.1016/S2221-1691(11)60081-6
[101]
Valková, V., et al. (2022) Cymbopogon citratus Essential Oil: Its Application as an Antimicrobial Agent in Food Preservation. Agronomy, 12, Article 155. https://doi.org/10.3390/agronomy12010155
[102]
Oloyede, O.I. (2009) Chemical Profile and Antimicrobial Activity of Cymbopogon citratus Leaves. Journal of Natural Products, 2, 98-103.
[103]
Aćimović, M., Kiprovski, B. and Gvozdenac, S. (2020) Application of Cymbopogon citratus in Agro-Food Industry. Journal of Agronomy, Technology and Engineering Management, 3, 423-436.
[104]
Lawal, O., Ogundajo, A.L., Avoseh, N.O. and Ogunwande I.A. (2017) Cymbopogon Citratus. In: Kuete, V., Ed., Medicinal Spices and Vegetables from Africa. Academic Press, Cambridge, MA, 397-423. https://doi.org/10.1016/B978-0-12-809286-6.00018-2
[105]
Dègnon, R.G., Allagbé, A.C., Adjou, E.S. and Dahouenon-Ahoussi, E. (2019) Antifungal Activities of Cymbopogon citratus Essential Oil against Aspergillus Species Isolated from Fermented Fish Products of Southern Benin. Journal of Food Quality and Hazards Control, 6, 53-57. https://doi.org/10.18502/jfqhc.6.2.955
[106]
Sessou, P., Farougou, S., Kaneho, S., Djenontin, S., Alitonou, G.A., Azokpota, P. and Sohounhloué, D. (2012) Bioefficacy of Cymbopogon citratus Essential Oil against Foodborne Pathogens in Culture Medium and in Traditional Cheese Wagashi Produced in Benin. International Research Journal Microbiology, 3, 406-415.
[107]
Wannissorn, B., Jarikasem, S. and Soontorntanasart, T. (1996) Antifungal Activity of Lemon Grass Oil and Lemon Grass Oil Cream. Phytotherapy Research, 10, 551-554. https://doi.org/10.1002/(SICI)1099-1573(199611)10:7<551::AID-PTR1908>3.0.CO;2-Q
[108]
Abou Elkhair, E.K. (2014) Antidermatophytic Activity of Essential Oils against Locally Isolated Microsporum canis—Gaza Strip. Natural Science, 6, 676-684. https://doi.org/10.4236/ns.2014.69067
[109]
Wuthi-Udomlert, M., Chotipatoomwan, P., Panyadee, S. and Gritsanapan, W. (2011) Inhibitory Effect of Formulated Lemongrass Shampoo on Malassezia furfur: A Yeast Associated with Dandruff. Southeast Asian Journal of Tropical Medicineand Public Health, 42, 363-369.
[110]
Ganjewala, D. (2009) Cymbopogon Essential Oils: Chemical Compositions and Bioactivities. International Journal of Essential Oil Therapeutics, 3, 56-65.
[111]
Irkin, R. and Korukluoglu, M. (2009) Effectiveness of Cymbopogon citratus L. Essential Oil to Inhibit the Growth of Some Filamentous Fungi and Yeasts. Journal of Medicinal Food, 12, 193-197. https://doi.org/10.1089/jmf.2008.0108
[112]
Kamaruddin, Z.H., Jumaidin, R., Selamat, M.Z. and Ilyas, R.A. (2022) Characteristics and Properties of Lemongrass (Cymbopogan citratus): A Comprehensive Review. Journal of Natural Fibers, 19, 8101-8118. https://doi.org/10.1080/15440478.2021.1958439
[113]
Manvitha, K. and Bidya, B. (2014) Review on Pharmacological Activity of Cymbopogon citratus. International Journal of Herbal Medicine, 6, 5-7.
[114]
Thangam, R., et al. (2014) Activation of Intrinsic Apoptotic Signaling Pathway in Cancer Cells by Cymbopogon citratus Polysaccharide Fractions. Carbohydrate Polymers, 107, 138-150. https://doi.org/10.1016/j.carbpol.2014.02.039
[115]
Blanco, M.M., et al. (2009) Neurobehavioral Effect of Essential Oil of Cymbopogon citratus in Mice. Phytomedicine, 16, 265-270. https://doi.org/10.1016/j.phymed.2007.04.007
[116]
Hanafy, M.A., Abdul-Aziz, G.M., Saleh, H.M., Mostafa, M.M.M. and Shaaban, M.M. (2009) Effect of Lemongrass (Cymbopogon citratus) and Rosemary (Rosmarinus officinalis) as Feed Additives on Lambs Performance. Egyptian Journal of Nutrition and Feeds, 12, 297-307.
[117]
Mmereole, F.U.C. (2010) Effects of Lemmon Grass (Cymbopogon citratus) Leaf Meal Feed Supplement on Growth Performance of Broiler Chicks. International Journal of Poultry Science, 9, 1107-1111. https://doi.org/10.3923/ijps.2010.1107.1111
[118]
Shahzadi, M.P. (2017) Lemon Grass (Cymbopogon citratus). In: Almusaed, A. and Al-Samaraee, S.M.S., Eds., Grasses: Benefits, Diversities and Functional Roles, IntechOpen, Rijeka, 121-141. https://doi.org/10.5772/intechopen.69518
[119]
Kumar, S.R., Avijit, D., Sundar, P.S., Mala, S. and Punia, B.S. (2018) Responses of Lemongrass (Cymbopogon citratus) Essential Oils Supplementation on in vitro Rumen Fermentation Parameters in Buffalo. Indian Journal of Animal Nutrition, 35, 174-179. https://doi.org/10.5958/2231-6744.2018.00026.9
[120]
Tarkang, P.A., et al. (2012) Effect of Long-Term Oral Administration of the Aqueous and Ethanol Leaf Extracts of Cymbopogoncitratus (DC. ex Nees) Stapf. Annals of Biological Research, 3, 5561-5570.
[121]
Maia, M.F. and Moore, S.J. (2011) Plant-Based Insect Repellents: A Review of Their Efficacy, Development and Testing. Malaria Journal, 10, Article No. S11. https://doi.org/10.1186/1475-2875-10-S1-S11
[122]
Krenchinski, F.H., et al. (2017) Allelopathic Potential of Cymbopogon citratus over Beggarticks (Bidenssp.) Germination. Australian Journal of Crop Science, 11, 277-283. https://doi.org/10.21475/ajcs.17.11.03.pne362
[123]
Poonpaiboonpipat, T., et al. (2013) Phytotoxic Effects of Essential Oil from Cymbopogon citratus and Its Physiological Mechanisms on Barnyardgrass (Echinochloa crus-galli). Industrial Crops and Products, 41, 403-407. https://doi.org/10.1016/j.indcrop.2012.04.057
[124]
Sousa, S.M., Silva, P.S. and Viccini, L.F. (2010) Cytogenotoxicity of Cymbopogon citratus (DC) Stapf (Lemon Grass) Aqueous Extracts in Vegetal Test Systems. Anais da Academia Brasileira de Ciências, 82, 305-311. https://doi.org/10.1590/S0001-37652010000200006
[125]
Li, H., Huang, J., Zhang, X., Chen, Y., Yang, J. and Hei, L. (2005) [Allelopathic Effects of Cymbopogon citratu Volatile and Its Chemical Components]. The Journalof Applied Ecology, 16, 763-767.
[126]
Almarie, A.A., Mamat, A.S. and Wahab, Z. (2016) Allelopathic Potentil of Cymbopogon citratus against Different Weed Species. Indian Research Journal of Pharmacy and Science, 3, 324-330.
[127]
Ngule, M.C., et al. (2014) Preliminary Phytochemical and Antibacterial Screening of Fresh Tetradenia riparia Leaves Water Extract against Selected Pathogenic Microorganisms. International Journal of Bioassays, 3, 3413-3418.
[128]
Luanda, A. and Ripanda, A. (2023) Recent Trend on Tetradenia riparia (Hochst.) Codd (Lamiaceae) for Management of Medical Conditions. Phytomedicine Plus, 3, Article 100382. https://doi.org/10.1016/j.phyplu.2022.100382
[129]
Cardoso, B.M., et al. (2015) Antileishmanial Activity of the Essential Oil from Tetradenia riparia Obtained in Different Seasons. Memórias do Instituto Oswaldo Cruz, 110, 1024-1034. https://doi.org/10.1590/0074-02760150290
[130]
Zardeto-Sabec, G., et al. (2020) Tetradenia riparia (Lamiaceae) Essential Oil: An Alternative to Rhipicephalus sanguineus. Australian Journal of Crop Science, 14, 1608-1615. https://doi.org/10.21475/ajcs.20.14.10.p2389
[131]
Scanavacca, J., et al. (2023) Antimicrobial Activity of Tetradenia Riparia Leaf Essential Oil. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, 22, 255-267.
[132]
Panda, S.K., Gazim, Z.C., Swain, S.S., et al. (2022) Ethnomedicinal, Phytochemical and Pharmacological Investigations of Tetradenia riparia (Hochst.) Codd (Lamiaceae). Frontiers in Pharmacology, 13, Article 896078. https://doi.org/10.3389/fphar.2022.896078
[133]
Ngezahayo, J., et al. (2015) Medicinal Plants Used by Burundian Traditional Healers for the Treatment of Microbial Diseases. Journal of Ethnopharmacology, 173, 338-351. https://doi.org/10.1016/j.jep.2015.07.028
[134]
Tugume, P., Kakudidi, E.K., Buyinza, M., et al. (2016) Ethnobotanical Survey of Medicinal Plant Species Used by Communities around Mabira Central Forest Reserve, Uganda. Journal of Ethnobiology and Ethnomedicine, 12, Article No. 5. https://doi.org/10.1186/s13002-015-0077-4
[135]
Ssegawa, P. and Kasenene, J.M. (2007) Medicinal Plant Diversity and Uses in the Sango Bay Area, Southern Uganda. Journal of Ethnopharmacology, 113, 521-540. https://doi.org/10.1016/j.jep.2007.07.014
[136]
York, T., de Wet, H. and van Vuuren, S. (2011) Plants Used for Treating Respiratory Infections in Rural Maputaland, KwaZulu-Natal, South Africa. Journal of Ethnopharmacology, 135, 696-710. https://doi.org/10.1016/j.jep.2011.03.072
[137]
Mutabana, N. and Mpulusu, D. (1990) Plantes médicinales cultivées dans la zone de Kabondo à Kisangani (Zaïre). African Study Monographs, 11, 87-99.
[138]
Moshi, M.J., Otieno, D.F., Mbabazi, P.K. and Weisheit, A. (2009) The Ethnomedicine of the Haya People of Bugabo Ward, Kagera Region, North Western Tanzania. Journal of Ethnobiology and Ethnomedicine, 5, Article No. 24. https://doi.org/10.1186/1746-4269-5-24
[139]
de Oliveira, A.C., et al. (2024) Essential Oil and Fenchone Extracted from Tetradenia riparia (Hochstetter.) Codd (Lamiaceae) Induce Oxidative Stress in Culex Quinquefasciatus Larvae (Diptera: Culicidae) without Causing Lethal Effects on Non-Target Animals. Environmental Science and Pollution Research, 1-13. https://doi.org/10.21203/rs.3.rs-3800387/v1
[140]
Ruvalcaba, L.P., et al. (2017) Effect of Cedar Extract (Cedrela odorata L.) on the Termite (Reticulitermes spp.). Agricultural Sciences, 8, 261-266. https://doi.org/10.4236/as.2017.84019
[141]
Van der Meersch, V., et al. (2021) Causes and Consequences of Cedrela odorata Invasion in West African Semi-Deciduous Tropical Forests. Biological Invasions, 23, 537-552. https://doi.org/10.1007/s10530-020-02381-8
[142]
Martins, A.P., et al. (2003) Chemical Composition of the Bark Oil of Cedrela odorata from S. Tome and Principe. Journal of Essential Oil Research, 15, 422-424. https://doi.org/10.1080/10412905.2003.9698629
[143]
Villanueva, H.E., et al. (2009) Chemical Composition and Antimicrobial Activity of the Bark Essential Oil of Cedrela odorata from Monteverde, Costa Rica. Der Pharma Chemica, 1, 14-18.
[144]
Lemus de la Cruz, A.S., Barrera-Cortés, J., Lina-García, L.P., Ramos-Valdivia, A.C. and Santillán, R. (2022) Nanoemulsified Formulation of Cedrela odorata Essential Oil and Its Larvicidal Effect against Spodoptera frugiperda (JE Smith). Molecules, 27, Article 2975. https://doi.org/10.3390/molecules27092975
[145]
Asogwa, E.U. and Osisanya, O.E. (2000) Insecticidal Activity of Crude Leaf and Wood Extracts of Cedrela odorata to the Maize Weevil Sitophilous zeamais (Motsch) in South West Nigeria. Bulletinof theScience AssociationofNigeria, 23, 39-50.
[146]
Dele, A.M. (2020) Volatile Oils from Cedrela odorata L. as Protectants against Sitophilus zeamais (Coleoptera: Curculionidae). American Journal of Essential Oils and Natural Products, 8, 20-24.
[147]
Gómez-Tah, J.R., et al. (2020) Ethanolic Extract of Cedrela odorata and Delonix regia for the Control of Anthonomus eugenii. Journal of Entomology and Zoology Studies, 8, 1349-1352.
[148]
Asekun, O.T., Asekunowo, A.K. and Balogun, K.A. (2013) Proximate Composition, Elemental Analysis, Phytochemistry and Antibacterial Properties of the Leaves of Costus afer KER GAWL and Cedrela odorata L. from Nigeria. Journal of Science Research Development, 14, 113-119.
[149]
Idu, M., Oshomoh, E.O. and Ovuakporie-Uvo, P.O. (2013) Phytochemistry and Antimicrobial Properties of Chlorophora excelsa, Cedrela odorata and Tectona grandis. TopclassJournalofHerbal Medicine, 2, 248-253.
[150]
Biabiany, M., et al. (2013) Antifungal Activity of 10 Guadeloupean Plants. Phytotherapy Research, 27, 1640-1645. https://doi.org/10.1002/ptr.4906
[151]
Silva, L., et al. (2017) Antimicrobial and Antioxidant Activities of Selected Plants Used by Populations from Juruena Valley, Legal Amazon, Brazil. International Journal of Pharmacy and Pharmaceutical Sciences, 9, 179-191. https://doi.org/10.22159/ijpps.2017v9i5.17086
[152]
Giordani, M.A., et al. (2015) Hydroethanolic Extract of the Inner Stem Bark of Cedrela odorata Has Low Toxicity and Reduces Hyperglycemia Induced by an Overload of Sucrose and Glucose. Journal of Ethnopharmacology, 162, 352-361. https://doi.org/10.1016/j.jep.2014.12.059
[153]
Paul, C. and Weber, M. (2013) Intercropping Cedrela odorata with Shrubby Crop Species to Reduce Infestation with Hypsipyla grandella and Improve the Quality of Timber. International Scholarly Research Notices, 2013, Article ID: 637410. https://doi.org/10.1155/2013/637410
[154]
Vroh, B.T.A. and Koné, A. (2023) Spatial Distribution of Cedrela odorata Smaller Trees Affects Forest Regeneration in Exotic Tree Plantations in Central Côte d’Ivoire. Journal of Tropical Biodiversity and Biotechnology, 8, Article 84322. https://doi.org/10.22146/jtbb.84322
[155]
Kilawe, C.J., Mchelu, H.A. and Emily, C.J. (2022) The Impact of the Invasive Tree Cedrela odorota on the Electric Blue Gecko (Lygodactylus williamsi) and Its Habitat (Pandanus rabaiensis) in Kimboza Forest Reserve, Tanzania. Global Ecology and Conservation, 38, e02225. https://doi.org/10.1016/j.gecco.2022.e02225
[156]
Bautista-Garfias, C.R., Castañeda-Ramirez, G.S., de Jesús Torres-Acosta, J.F., Salinas-Estrella, E., Moshin, M. and Aguilar-Marcelino, L. (2021) Fly Borne Diseases in Animals. In: Abbas, R.Z. and Khan, A., Eds., Veterinary Pathobiology and Public Health, Unique Scientific Publishers, Faisalabad, 114-127.
[157]
Förster, M., et al. (2012) Flies as Vectors of Parasites Potentially Inducing Severe Diseases in Humans and Animals. In: Mehlhorn, H., Ed., Arthropods as Vectors of Emerging Diseases, Parasitology Research Monographs, Vol. 3, Springer, Berlin, 227-253. https://doi.org/10.1007/978-3-642-28842-5_10
[158]
Khamesipour, F., et al. (2018) A Systematic Review of Human Pathogens Carried by the Housefly (Musca domestica L.). BMC Public Health, 18, Article No. 1049. https://doi.org/10.1186/s12889-018-5934-3
[159]
Buzzell, G.R., Tariq, S., Traversa, D. and Schuster, R. (2011) Morphology of the Infective Larval Stage of the Equid Parasite Habronema muscae (Spirurida: Habronematidae), from Houseflies (Musca domestica). Parasitology Research, 108, 629-632. https://doi.org/10.1007/s00436-010-2106-5
[160]
Wanyonyi, A.W., et al., (2002) Bioactive Steroidal Alkaloid Glycosides from Solanum aculeastrum. Phytochemistry, 59, 79-84. https://doi.org/10.1016/S0031-9422(01)00424-1
[161]
Koduru, S., Grierson, D. and Afolayan, A. (2006) Antimicrobial Activity of Solanum aculeastrum. Pharmaceutical Biology, 44, 283-286. https://doi.org/10.1080/13880200600714145
[162]
Wanyonyi, A.W., et al. (2003) Molluscicidal and Antimicrobial Activity of Solanum aculeastrum. Fitoterapia, 74, 298-301. https://doi.org/10.1016/S0367-326X(03)00030-3
[163]
Burger, T., et al. (2018) Solamargine, a Bioactive Steroidal Alkaloid Isolated from Solanum aculeastrum Induces Non-Selective Cytotoxicity and P-Glycoprotein Inhibition. BMC Complementary and Alternative Medicine, 18, Article No. 137. https://doi.org/10.1186/s12906-018-2208-7
[164]
Koduru, S., Grierson, D.S., van de Venter, M. and Afolayan, A.J. (2007) Anticancer Activity of Steroid Alkaloids Isolated from Solanum aculeastrum. Pharmaceutical Biology, 45, 613-618. https://doi.org/10.1080/13880200701538690
[165]
Aboyade, O., et al. (2010) Safety Evaluation of Aqueous Extract of Unripe Berries of Solanum aculeastrum in Male Wistar Rats. African Journal of PharmacyandPharmacology, 4, 90-97.
[166]
Neuwinger, H.D. (2004) Plants Used for Poison Fishing in Tropical Africa. Toxicon, 44, 417-430. https://doi.org/10.1016/j.toxicon.2004.05.014
[167]
Agbon, A., ofojekwu, C. and Ezenwaka, I. (2004) Acute Toxicity of Water Extract of Tephrosia vogelii Hook to Species Relevant in Aquaculture Ponds: Rotifers, Cyclops, Mosquito Larvae and Fish. Journal of Applied Ichthyology, 20, 521-524. https://doi.org/10.1111/j.1439-0426.2004.00563.x
[168]
Centre, W.A. Tephrosia Vogelii-Action Sheet 53. https://www.paceproject.net/wp-content/uploads/2021/10/Tephrosia-vogelii-Action-Sheet-53.pdf
[169]
Kerebba, N., et al. (2019) Pesticidal Activity of Tithonia diversifolia (Hemsl.) A. Gray and Tephrosia vogelii (Hook f.); Phytochemical Isolation and Characterization: A Review. South African Journal of Botany, 121, 366-376. https://doi.org/10.1016/j.sajb.2018.11.024
[170]
Dzenda, T., et al. (2007) Preliminary Investigation into the Acute Oral Toxicity of Tephrosia vogelii Leaves in Mice. Nigerian Veterinary Journal, 28, 47-52. https://doi.org/10.4314/nvj.v28i2.3555
[171]
Li, W., et al. (2015) Laboratory Evaluation of Aqueous Leaf Extract of Tephrosia vogelii against Larvae of Aedes albopictus (Diptera: Culicidae) and Non-Target Aquatic Organisms. Acta Tropica, 146, 36-41. https://doi.org/10.1016/j.actatropica.2015.02.004
[172]
Oyewole, I., et al. (2008) Anti-Malarial and Repellent Activities of Tithonia diversifolia (Hemsl.) Leaf Extracts. Journal of Medicinal Plants Research, 2, 171-175.
[173]
Aswini, B., Anita, B., Sharmila, A. and Jeya Sundara Sharmila, D. (2022) Nematicidal Potential of Mexican Sunflower,(Tithonia diversifolia) against the Root-Knot Nematode, Meloidogyne incognita. The Pharma Innovation Journal, 11, 963-967.
[174]
Rodríguez, J., Montoya-Lerma, J. and Calle, Z. (2015) Effect of Tithonia diversifolia Mulch on Atta cephalotes (Hymenoptera: Formicidae) Nests. Journal of Insect Science, 15, 32. https://doi.org/10.1093/jisesa/iev015
[175]
Di Giacomo, C., et al. (2015) Effects of Tithonia diversifolia (Hemsl.) A. Gray Extract on Adipocyte Differentiation of Human Mesenchymal Stem Cells. PLOS ONE, 10, e0122320. https://doi.org/10.1371/journal.pone.0122320
[176]
Lee, M.-Y., et al. (2011) Identification and Anti-Human Glioblastoma Activity of Tagitinin C from Tithonia diversifolia Methanolic Extract. Journal of Agricultural and Food Chemistry, 59, 2347-2355. https://doi.org/10.1021/jf105003n
[177]
Chagas-Paula, D.A., et al. (2012) Ethnobotany, Chemistry, and Biological Activities of the Genus Tithonia (Asteraceae). Chemistry & Biodiversity, 9, 210-235. https://doi.org/10.1002/cbdv.201100019
[178]
Tona, L., et al. (2000) Antiamoebic and Spasmolytic Activities of Extracts from Some Antidiarrhoeal Traditional Preparations Used in Kinshasa, Congo. Phytomedicine, 7, 31-38. https://doi.org/10.1016/S0944-7113(00)80019-7
[179]
Elufioye, T., et al. (2009) Toxicity Studies of Tithonia diversifolia A. Gray (Asteraceae) in Rats. Journal of Ethnopharmacology, 122, 410-415. https://doi.org/10.1016/j.jep.2008.12.007
[180]
Passoni, F.D., et al. (2013) Repeated-Dose Toxicological Studies of Tithonia diversifolia (Hemsl.) A. Gray and Identification of the Toxic Compounds. Journal of Ethnopharmacology, 147, 389-394. https://doi.org/10.1016/j.jep.2013.03.024
[181]
Tongma, S., Kobayashi, K. and Usui, K. (1998) Allelopathic Activity of Mexican Sunflower (Tithonia diversifolia) in Soil. Weed Science, 46, 432-437. https://doi.org/10.1017/S0043174500090858
[182]
Tongma, S., Kobayashi, K. and Usui, K. (1997) Effect of Water Extract from Mexican Sunflower [Tithonia diversifolia (Hemsl.) A. Gray] on Germination and Growth of Tested Plants. Journal of Weed Science and Technology, 42, 373-378. https://doi.org/10.3719/weed.42.373
[183]
Oyerinde, R.O., Otusanya, O.O. and Akpor, O.B. (2009) Allelopathic Effect of Tithonia diversifolia on the Germination, Growth and Chlorophyll Contents of Maize (Zea mays L.). Scientific Research and Essay, 4, 1553-1558.
[184]
Tuei, B.R., Sirmah, P.K. and Njagi, P. (2019) Repellence of Volatiles and Extracts of Solanecio manii to Subterranean Termites, Macrotermes natalensis in Laboratory Test. East African Journal of Agriculture and Biotechnology, 1, 47-57.