All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...
Health  2024 

Recent Advances in Bronchopulmonary Dysplasia Protection and Therapy

DOI: 10.4236/health.2024.165033, PP. 470-489

Keywords: Bronchopulmonary Dysplasia, Preterm Infants, Protection and Therapy, Mesenchymal Stem Cells, Gut Microbiota

Full-Text   Cite this paper   Add to My Lib

Abstract:

For preterm infants, bronchopulmonary dysplasia (BPD) is usually caused by abnormal lung development due to various factors during prenatal and postnatal process. One of the reasons for death and bad prognosis of preterm infants is to have BPD. Up to now, there are no unified strategies or drugs to treat BPD. In clinical, many intervention treatments have been applied to achieve BPD therapy, mainly including preterm protection, protective ventilation strategies, and delivery of corticosteroids, pulmonary vasodilators, and antioxidants. This review summarizes the current advances in BPD protection and treatment, and notes that gut microbiota and mesenchymal stem cells (MSCs) can be the promising strategy for protecting and treating BPD in the future.

References

[1]  Poindexter, B.B., Feng, R., Schmidt, B., et al. (2015) Comparisons and Limitations of Current Definitions of Bronchopulmonary Dysplasia for the Prematurity and Respiratory Outcomes Program. Annals of the American Thoracic Society, 12, 1822-1830.
https://doi.org/10.1513/AnnalsATS.201504-218OC
[2]  Perrone, S., Tataranno, M.L. and Buonocore, G. (2012) Oxidative Stress and Bronchopulmonary Dysplasia. Journal of Clinical Neonatology, 1, 109-114.
https://doi.org/10.4103/2249-4847.101683
[3]  Eichenwald, E.C. and Stark, A.R. (2008) Management and Outcomes of Very Low Birth Weight. The New England Journal of Medicine, 358, 1700-1711.
https://doi.org/10.1056/NEJMra0707601
[4]  Jobe, A.H. and Bancalari, E. (2001) Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 163, 1723-1729.
https://doi.org/10.1164/ajrccm.163.7.2011060
[5]  Higgins, R.D., Jobe, A.H., Koso-Thomas, M., et al. (2018) Bronchopulmonary Dysplasia: Executive Summary of a Workshop. The Journal of Pediatrics, 197, 300-308.
https://doi.org/10.1016/j.jpeds.2018.01.043
[6]  Kim, F., Bateman, D.A., Goldshtrom, N., et al. (2021) Revisiting the Definition of Bronchopulmonary Dysplasia in Premature Infants at a Single Center Quaternary Neonatal Intensive Care Unit. Journal of Perinatology, 41, 756-763.
https://doi.org/10.1038/s41372-021-00980-4
[7]  Husain, A.N., Siddiqui, N.H. and Stocker, J.T. (1998) Pathology of Arrested Acinar Development in Postsurfactant Bronchopulmonary Dysplasia. Human Pathology, 29, 710-717.
https://doi.org/10.1016/S0046-8177(98)90280-5
[8]  Ma, L., Zhou, P., Neu, J. and Lin, H.C. (2017) Potential Nutrients for Preventing or Treating Bronchopulmonary Dysplasia. Paediatric Respiratory Reviews, 22, 83-88.
https://doi.org/10.1016/j.prrv.2016.08.013
[9]  Thille, A.W., Esteban, A., Fernández-Segoviano, P., et al. (2013) Comparison of the Berlin Definition for Acute Respiratory Distress Syndrome with Autopsy. American Journal of Respiratory and Critical Care Medicine, 187, 761-767.
https://doi.org/10.1164/rccm.201211-1981OC
[10]  Kalikkot Thekkeveedu, R., El-Saie, A., Prakash, V., et al. (2022) Ventilation-Induced Lung Injury (VILI) in Neonates: Evidence-Based Concepts and Lung-Protective Strategies. Journal of Clinical Medicine, 11, Article 557.
https://doi.org/10.3390/jcm11030557
[11]  Coalson, J.J. (2003) Pathology of New Bronchopulmonary Dysplasia. Seminars in Fetal and Neonatal Medicine, 8, 73-81.
https://doi.org/10.1016/S1084-2756(02)00193-8
[12]  Ferrero, D.M., Larson, J., Jacobsson, B., et al. (2016) Cross-Country Individual Participant Analysis of 4.1 Million Singleton Births in 5 Countries with Very High Human Development Index Confirms Known Associations But Provides No Biologic Explanation for 2/3 of All Preterm Births. PLOS ONE, 11, e0162506.
https://doi.org/10.1371/journal.pone.0162506
[13]  Goldenberg, R.L., Culhane, J.F., Iams, J.D., et al. (2008) Epidemiology and Causes of Preterm Birth. Lancet, 371, 75-84.
https://doi.org/10.1016/S0140-6736(08)60074-4
[14]  Liggins, G.C. and Howie, R.N. (1972) A Controlled Trial of Antepartum Glucocorticoid Treatment for Prevention of the Respiratory Distress Syndrome in Premature Infants. Pediatrics, 50, 515-525.
https://doi.org/10.1542/peds.50.4.515
[15]  Venkatesh, V.C. and Katzberg, H.D. (1997) Glucocorticoid Regulation of Epithelial Sodium Channel Genes in Human Fetal Lung. American Journal of Physiology-Lung Cellular and Molecular Physiolog, 273, L227-L233.
https://doi.org/10.1152/ajplung.1997.273.1.L227
[16]  Ballard, P.L. (2000) Scientifific Rationale for the Use of Antenatal Glucocorticoids to Promote Fetal Development. NeoReviews, 1, e83-e90.
https://doi.org/10.1542/neo.1-5-e83
[17]  Millage, A.R., Latuga, M.S. AND Aschner, J.L. (2017) Effffect of Perinatal Glucocorticoids on Vascular Health and Disease. Pediatric Research, 81, 4-10.
https://doi.org/10.1038/pr.2016.188
[18]  Haviv, H.R., Said, J. AND Mol, B.W. (2019) The Place of Antenatal Corticosteroids in Late Preterm and Early Term Births. Seminars in Fetal and Neonatal Medicine, 24, 37-42.
https://doi.org/10.1016/j.siny.2018.10.001
[19]  Roberts, D., Brown, J., Medley, N., et al. (2017) Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database of Systematic Reviews, 3, CD004454.
https://doi.org/10.1002/14651858.CD004454.pub3
[20]  McGoldrick, E., Stewart, F., Parker, R., et al. (2020) Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database of Systematic Reviews, 3, CD004454.
https://doi.org/10.1002/14651858.CD004454.pub4
[21]  Travers, C.P., Carlo, W.A., McDonald, S.A., et al. (2018) Mortality and Pulmonary Outcomes of Extremely Preterm Infants Exposed to Antenatal Corticosteroids. American Journal of Obstetrics and Gynecology, 218, 130.e1-130.e13.
https://doi.org/10.1016/j.ajog.2017.11.554
[22]  Doyle, L.W. (2021) Postnatal Corticosteroids to Prevent or Treat Bronchopulmonary Dysplasia. Neonatology, 118, 244-251.
https://doi.org/10.1159/000515950
[23]  Avery, G.B., Fletcher, A.B., Kaplan, M., et al. (1985) Controlled Trial of Dexamethasone in Respirator-Dependent Infants with Bronchopulmonary Dysplasia. Pediatrics, 75, 106-111.
https://doi.org/10.1542/peds.75.1.106
[24]  Doyle, L.W., Cheong, J.L., Ehrenkranz, R.A., et al. (2017) Early (< 8 Days) Systemic Postnatal Corticosteroids for Prevention of Bronchopulmonary Dysplasia in Preterm Infants. Cochrane Database of Systematic Reviews, 10, CD001146.
https://doi.org/10.1002/14651858.CD001145.pub4
[25]  Doyle, L.W., Cheong, J.L., Ehrenkranz, R.A., et al. (2017) Late (>7 Days) Systemic Postnatal Corticosteroids for Prevention of Bronchopulmonary Dysplasia in Preterm Infants. Cochrane Database of Systematic Reviews, 10, CD001145.
https://doi.org/10.1002/14651858.CD001145.pub4
[26]  Yuksel, B. and Greenough, A. (1992) Randomised Trial of Inhaled Steroids in Preterm Infants with Respiratory Symptoms at Follow Up. Thorax, 47, 910-913.
https://doi.org/10.1136/thx.47.11.910
[27]  Bassler, D., Plavka, R., Shinwell, E.S., et al. (2015) Early Inhaled Budesonide for the Prevention of Bronchopulmonary Dysplasia. The New England Journal of Medicine, 373, 1497-1506.
https://doi.org/10.1056/NEJMoa1501917
[28]  Nelin, L.D. and Logan, J.W. (2017) The Use of Inhaled Corticosteroids in Chronically Ventilated Preterm Infants. Seminars in Fetal and Neonatal Medicine, 22, 296-301.
https://doi.org/10.1016/j.siny.2017.07.005
[29]  Shah, S.S., Ohlsson, A., Halliday, H.L., et al. (2017) Inhaled versus Systemic Corticosteroids for the Treatment of Bronchopulmonary Dysplasia in Ventilated Very Low Birth Weight Preterm Infants. Cochrane Database of Systematic Reviews, 10, CD002057.
https://doi.org/10.1002/14651858.CD002057.pub4
[30]  Hunt, K.A., Dassios, T., Ali, K. and Greenough, A. (2018) Prediction of Bronchopulmonary Dysplasia Development. ADC Fetal & Neonatal Edition, 103, F598-F599.
https://doi.org/10.1136/archdischild-2018-315343
[31]  Sweet, D.G., Carnielli, V., Greisen, G., et al. (2019) European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2019 Update. Neonatology, 115, 432-450.
https://doi.org/10.1159/000499361
[32]  Webb, H.H. and Tierney, D.F. (1974) Experimental Pulmonary Edema Due to Intermittent Positive Pressure Ventilation with High Inflation Pressures. Protection by Positive End-Expiratory Pressure. American Review of Respiratory Disease, 110, 556-565.
[33]  Slutsky, A.S. and Ranieri, V.M. (2013) Ventilator-Induced Lung Injury. The New England Journal of Medicine, 369, 2126-2136.
https://doi.org/10.1056/NEJMra1208707
[34]  Schmölzer, G.M., Kumar, M., Pichler, G., et al. (2013) Non-Invasive versus Invasive Respiratory Support in Preterm Infants at Birth: Systematic Review and Meta-Analysis. BMJ, 347, f5980.
https://doi.org/10.1136/bmj.f5980
[35]  Bhandari, V., Finer, N.N., Ehrenkranz, R.A., et al. (2009) Synchronized Nasal Intermittent Positive-Pressure Ventilation and Neonatal Outcomes. Pediatrics, 124, 517-526.
https://doi.org/10.1542/peds.2008-1302
[36]  Behnke, J., Lemyre, B., Czernik, C., et al. (2019) Non-Invasive Ventilation in Neonatology. Deutsches Ärzteblatt International, 116, 177-183.
https://doi.org/10.3238/arztebl.2019.0177
[37]  Carlton, D.P., Cummings, J.J., Scheerer, R.G., et al. (1990) Lung Overexpansion Increases Pulmonary Microvascular Protein Permeability in Young Lambs. Journal of Applied Physiology, 69, 577-583.
https://doi.org/10.1152/jappl.1990.69.2.577
[38]  Mokres, L.M., Parai, K., Hilgendorff, A., et al. (2010) Prolonged Mechanical Ventilation with Air Induces Apoptosis and Causes Failure of Alveolar Septation and Angiogenesis in Lungs of Newborn Mice. American Journal of Physiology-Lung Cellular and Molecular Physiology, 298, L23-L35.
https://doi.org/10.1152/ajplung.00251.2009
[39]  Wada, K., Jobe, A.H. and Ikegami, M. (1997) Tidal Volume Effects on Surfactant Treatment Responses with the Initiation of Ventilation in Preterm Lambs. Journal of Applied Physiology, 83, 1054-1061.
https://doi.org/10.1152/jappl.1997.83.4.1054
[40]  Lista, G., Colnaghi, M., Castoldi, F., et al. (2004) Impact of Targeted-Volume Ventilation on Lung Inflammatory Response in Preterm Infants with Respiratory Distress Syndrome (RDS). Pediatric Pulmonology, 37, 510-514.
https://doi.org/10.1002/ppul.10458
[41]  Jain, D. and Bancalari, E. (2019) New Developments in Respiratory Support for Preterm Infants. American Journal of Perinatology, 36, S13-S17.
https://doi.org/10.1055/s-0039-1691817
[42]  Peng, W., Zhu, H., Shi, H. and Liu, E.M. (2014) Volume-Targeted Ventilation Is More Suitable than Pressure-Limited Ventilation for Preterm Infants: A Systematic Review and Meta-Analysis. ADC Fetal & Neonatal Edition, 99, F158-F165.
https://doi.org/10.1136/archdischild-2013-304613
[43]  Klingenberg, C., Wheeler, K.I., McCallion, N., et al. (2017) Volume-Targeted Versus Pressure-Limited Ventilation in Neonates. Cochrane Database of Systematic Reviews, 10, CD003666.
https://doi.org/10.1002/14651858.CD003666.pub4
[44]  Cannavò, L., Rulli, I., Falsaperla, R., et al. (2020) Ventilation, Oxidative Stress and Risk of Brain Injury in Preterm Newborn. Italian Journal of Pediatrics, 46, Article No. 100.
https://doi.org/10.1186/s13052-020-00852-1
[45]  Navalesi, P. and Longhini, F. (2015) Neurally Adjusted Ventilatory Assist. Current Opinion in Critical Care, 21, 58-64.
https://doi.org/10.1097/MCC.0000000000000167
[46]  Protain, A.P., Firestone, K.S., McNinch, N.L. and Stein, H.M. (2021) Evaluating Peak Inspiratory Pressures and Tidal Volume in Premature Neonates on NAVA Ventilation. European Journal of Pediatrics, 180, 167-175.
https://doi.org/10.1007/s00431-020-03728-y
[47]  Rosterman, J.L., Pallotto, E.K., Truog, W.E., et al. (2018) The Impact of Neurally Adjusted Ventilatory Assist Mode on Respiratory Severity Score and Energy Expenditure in Infants: A Randomized Crossover Trial. Journal of Perinatology, 38, 59-63.
https://doi.org/10.1038/jp.2017.154
[48]  Jung, Y.H., Kim, H.S., Lee, J., et al. (2016) Neurally Adjusted Ventilatory Assist in Preterm Infants with Established or Evolving Bronchopulmonary Dysplasia on Highintensity Mechanical Ventilatory Support: A Single-Center Experience. Pediatric Critical Care Medicine, 17, 1142-1146.
https://doi.org/10.1097/PCC.0000000000000981
[49]  Shetty, S., Evans, K., Cornuaud, P., et al. (2021) Neurally Adjusted Ventilatory Assist in Very Prematurely Born Infants with Evolving/Established Bronchopulmonary Dysplasia. American Journal of Perinatology Reports, 11, e127-e131.
https://doi.org/10.1055/s-0041-1739458
[50]  Jing, Z.F., Shen, K.L., Shen, Y., et al. (2015) Zhufutang Practical Pediatrics: Neonatal Respiratory Diseases. 5th Edition, People’s Health Publishing House, Beijing.
[51]  Soll, R.F. (2000) Synthetic Surfactant for Respiratory Distress Syndrome in Preterm Infants. Cochrane Database of Systematic Reviews, 3, CD001149.
https://doi.org/10.1002/14651858.CD001149
[52]  Bahadue, F.L. and Soll, R. (2012) Early Versus Delayed Selective Surfactant Treatment for Neonatal Respiratory Distress Syndrome. Cochrane Database of Systematic Reviews, 11, CD001456.
https://doi.org/10.1002/14651858.CD001456.pub2
[53]  Rigo, V., Lefebvre, C. and Broux, I. (2016) Surfactant Instillation in Spontaneously Breathing Preterm Infants: A Systematic Review and Meta-Analysis. European Journal of Pediatrics, 175, 1933-1942.
https://doi.org/10.1007/s00431-016-2789-4
[54]  Cummings, J.J., Gerday, E., Minton, S., et al. (2020) Aerosolized Calfactant for Newborns with Respiratory Distress: A Randomized Trial. Pediatrics, 146, e20193967.
https://doi.org/10.1542/peds.2019-3967
[55]  Aranda, J.V., Gorman, W., Bergsteinsson, H., et al. (1977) Effiffifficacy of Caffffeine in Treatment of Apnea in the Low-Birth-Weight Infant. The Journal of Pediatrics, 90, 467-472.
https://doi.org/10.1016/S0022-3476(77)80718-X
[56]  Abu-Shaweesh, J.M. and Martin, R.J. (2017) Caffffeine Use in the Neonatal Intensive Care Unit. Seminars in Fetal and Neonatal Medicine, 22, 342-347.
https://doi.org/10.1016/j.siny.2017.07.011
[57]  Davis, J.M., Bhutani, V.K., Stefano, J.L., et al. (1989) Changes in Pulmonary Mechanics Following Caffffeine Administration in Infants with Bronchopulmonary Dysplasia. Pediatric Pulmonology, 6, 49-52.
https://doi.org/10.1002/ppul.1950060112
[58]  Schmidt, B., Roberts, R.S., Davis, P., et al. (2006) Caffeine Therapy for Apnea of Prematurity. The New England Journal of Medicine, 354, 2112-2121.
https://doi.org/10.1056/NEJMoa054065
[59]  Davis, P.G., Schmidt, B., Roberts, R.S., et al. (2010) Caffeine for Apnea of Prematurity Trial: Benefits May Vary in Subgroups. The Journal of Pediatrics, 156, 382-387.
https://doi.org/10.1016/j.jpeds.2009.09.069
[60]  Lodha, A., Seshia, M., McMillan, D.D., et al. (2015) Association of Early Caffeine Administration and Neonatal Outcomes in Very Preterm Neonates. JAMA Pediatrics, 169, 33-38.
https://doi.org/10.1001/jamapediatrics.2014.2223
[61]  Papoffff, P., Cerasaro, C., Caresta, E., et al. (2012) Current Strategies for Treating Infants with Severe Bronchopulmonary Dysplasia. The Journal of Maternal-Fetal & Neonatal Medicine, 25, 15-20.
https://doi.org/10.3109/14767058.2012.712352
[62]  Berkelhamer, S.K., Mestan, K.K. and Steinhorn, R.H. (2013) Pulmonary Hypertension in Bronchopulmonary Dysplasia. Seminars in Perinatology, 37, 124-131.
https://doi.org/10.1053/j.semperi.2013.01.009
[63]  Berger, S. and Konduri, G.G. (2006) Pulmonary Hypertension in Children: The Twenty-Fifirst Century. Pediatric Clinics of North America, 53, 961-967.
https://doi.org/10.1016/j.pcl.2006.08.001
[64]  Ter Horst, S.A.J., Walther, F.J., Poorthuis, B.J.H.M., et al. (2007) Inhaled Nitric Oxide Attenuates Pulmonary Inflammation and Fifibrin Deposition and Prolongs Survival in Neonatal Hyperoxic Lung Injury. American Journal of Physiology-Lung Cellular and Molecular Physiology, 293, L35-L44.
https://doi.org/10.1152/ajplung.00381.2006
[65]  Banks, B.A., Seri, I., Ischiropoulos, H., et al. (1999) Changes in Oxygenation with Inhaled Nitric Oxide in Severe Bronchopulmonary Dysplasia. Pediatrics, 103, 610-618.
https://doi.org/10.1542/peds.103.3.610
[66]  Barrington, K.J., Finer, N. and Pennaforte, T. (2017) Inhaled Nitric Oxide for Respiratory Failure in Preterm Infants. Cochrane Database of Systematic Reviews, 1, CD000509.
https://doi.org/10.1002/14651858.CD000509.pub5
[67]  Hibbs, A.M., Walsh, M.C., Martin, R.J., et al. (2008) One-Year Respiratory Outcomes of Preterm Infants Enrolled in the Nitric Oxide (to Prevent) Chronic Lung Disease Trial. The Journal of Pediatrics, 153, 525-529.
https://doi.org/10.1016/j.jpeds.2008.04.033
[68]  De Visser, Y.P., Walther, F.J., Laghmani, E.H., et al. (2009) Sildenafifil Attenuates Pulmonary Inflammation and Fifibrin Deposition, Mortality and Right Ventricular Hypertrophy in Neonatal Hyperoxic Lung Injury. Respiratory Research, 10, Article No. 30.
https://doi.org/10.1186/1465-9921-10-30
[69]  Van Der Graaf, M., Rojer, L.A., Helbing, W.A., et al. (2019) Sildenafifil for Bronchopulmonary Dysplasia and Pulmonary Hypertension: A Meta-Analysis. Pulmonary Circulation, 9, 1-8.
https://doi.org/10.1177/2045894019837875
[70]  Ali, Z., Schmidt, P., Dodd, J. and Jeppesen, D.L. (2013) Bronchopulmonary Dysplasia: A Review. Archives of Gynecology and Obstetrics, 288, 325-333.
https://doi.org/10.1007/s00404-013-2753-8
[71]  Araki, S., Kato, S., Namba, F., et al. (2018) Vitamin A to Prevent Bronchopulmonary Dysplasia in Extremely Low Birth Weight Infants: A Systematic Review and Meta-Analysis. PLOS ONE, 13, e0207730.
https://doi.org/10.1371/journal.pone.0207730
[72]  Shenai, J.P., Chytil, F. and Stahlman, M.T. (1985) Vitamin A Status of Neonates with Bronchopulmonary Dysplasia. Pediatric Research, 19, 185-188.
https://doi.org/10.1203/00006450-198502000-00007
[73]  Tyson, J.E., Wright, L.L. and Stahlman, M.T. (1999) Vitamin A Supplementation for Extremelylow-Birth-Weight Infants. National Institute of Child Health and Human Development Neonatal Research Network. The New England Journal of Medicine, 340, 1962-1968.
[74]  Rysavy, M.A., Li, L., Tyson, J.E., et al. (2021) Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Should Vitamin A Injections to Prevent Bronchopulmonary Dysplasia or Death Be Reserved for High-Risk Infants? Reanalysis of the National Institute of Child Health and Human Development Neonatal Research Network Randomized Trial. The Journal of Pediatrics, 236, 78-85.E5.
https://doi.org/10.1016/j.jpeds.2021.05.022
[75]  Garg, B.D., Bansal, A. and Kabra, N.S. (2019) Role of Vitamin A Supplementation in Prevention of Bronchopulmonary Dysplasia in Extremely Low Birth Weight Neonates: A Systematic Review of Randomized Trials. The Journal of Maternal-Fetal & Neonatal Medicine, 32, 2608-2615.
https://doi.org/10.1080/14767058.2018.1441282
[76]  Falciglia, H.S., Johnson, J.R., Sullivan, J., et al. (2003) Role of Antioxidant Nutrients and Lipid Peroxidation in Premature Infants with Respiratory Distress Syndrome and Bronchopulmonary Dysplasia. American Journal of Perinatology, 20, 97-108.
https://doi.org/10.1055/s-2003-38315
[77]  Vyas, J.R., Currie, A., Dunster, C., et al. (2001) Ascorbate Acid Concentration in Airways Lining Fluid from Infants Who Develop Chronic Lung Disease of Prematurity. European Journal of Pediatrics, 160, 177-184.
https://doi.org/10.1007/s004310000709
[78]  Ofman, G. and Tipple, T.E. (2019) Antioxidants & Bronchopulmonary Dysplasia: Beating the System or Beating a Dead Horse? Free Radical Biology and Medicine, 142, 138-145.
https://doi.org/10.1016/j.freeradbiomed.2019.01.038
[79]  Arigliani, M., Spinelli, A.M., Liguoro, I., et al. (2018) Nutrition and Lung Growth. Nutrients, 10, Article 919.
https://doi.org/10.3390/nu10070919
[80]  Tindell, R. and Tipple, T. (2018) Selenium: Implications for Outcomes in Extremely Preterm Infants. Journal of Perinatology, 38, 197-202.
https://doi.org/10.1038/s41372-017-0033-3
[81]  Mostafa-Gharehbaghi, M., Mostafa-Gharabaghi, P., Ghanbari, F., et al. (2012) Determination of Selenium in Serum Samples of Preterm Newborn Infants with Bronchopulmonary Dysplasia Using a Validated Hydride Generation System. Biological Trace Element Research, 147, 1-7.
https://doi.org/10.1007/s12011-011-9270-z
[82]  Peirovifar, A., Gharehbaghi, M.M., Abdulmohammad-Zadeh, H., et al. (2013) Serum Selenium Levels of the Very Low Birth Weight Premature Newborn Infants with Bronchopulmonary Dysplasia. Journal of Trace Elements in Medicine and Biology, 27, 317-321.
https://doi.org/10.1016/j.jtemb.2013.03.006
[83]  Staub, E., Evers, K. and Askie, L.M. (2021) Enteral Zinc Supplementation for Prevention of Morbidity and Mortality in Preterm Neonates. Cochrane Database of Systematic Reviews, 12, CD012797.
https://doi.org/10.1002/14651858.CD012797.pub2
[84]  Mathur, N.B. and Agarwal, D.K. (2015) Zinc Supplementation in Preterm Neonates and Neurological Development: A Randomized Controlled Trial. Indian Pediatrics, 52, 951-955.
https://doi.org/10.1007/s13312-015-0751-6
[85]  Poggi, C. and Dani, C. (2014) Antioxidant Strategies and Respiratory Disease of the Preterm Newborn: An Update. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 721043.
https://doi.org/10.1155/2014/721043
[86]  Suleymanoglu, S., Çekmez, F., Cetinkaya, M., et al. (2014) Protective Effects of Melatonin Therapy in Model for Neonatal Hyperoxic Lung Injury. Alternative Therapies in Health and Medicine, 20, 24-29.
[87]  Lee, J.Y., Na, Q., Shin, N.E., et al. (2020) Melatonin for Prevention of Fetal Lung Injury Associated with Intrauterine Inflflammation and for Improvement of Lung Maturation. Journal of Pineal Research, 69, e12687.
https://doi.org/10.1111/jpi.12687
[88]  Shawky Elfarargy, M., Adam Ali, D. and Al-Ashmawy, G.M. (2020) Melatonin Supplementation as Adjuvant Therapy for the Prevention of Brunchopulmonary Dysplasia in Neonates. Iranian Journal of Neonatology, 11, 85-90.
[89]  Dilli, D., Özyazici, A., Dursun, A., et al. (2017) Predictive Values of Plasma KL-6 in Bronchopulmonary Dysplasia in Preterm Infants. Turkish Journal of Medical Sciences, 47, 621-626.
https://doi.org/10.3906/sag-1512-78
[90]  Barrington, K.J., Fortin-Pellerin, E. and Pennaforte, T. (2017) Fluid Restriction for Treatment of Preterm Infants with Chronic Lung Disease. Cochrane Database of Systematic Reviews, 2, CD005389.
https://doi.org/10.1002/14651858.CD005389.pub2
[91]  Stewart, A. and Brion, L.P. (2011) Intravenous or Enteral Loop Diuretics for Preterm Infants with (or Developing) Chronic Lung Disease. Cochrane Database of Systematic Reviews, 9, CD001453.
https://doi.org/10.1002/14651858.CD001453.pub2
[92]  Stewart, A.L. and Brion, L.P. (2011) Routine Use of Diuretics in Very-Low Birth-Weight Infants in the Absence of Supporting Evidence. Journal of Perinatology, 31, 633-634.
https://doi.org/10.1038/jp.2011.44
[93]  Pacifici, G.M. (2012) Clinical Pharmacology of the Loop Diuretics Furosemide and Bumetanide in Neonates and Infants. Pediatric Drugs, 14, 233-246.
https://doi.org/10.2165/11596620-000000000-00000
[94]  Johnson, A.K., Lynch, N., Newberry, D., et al. (2017) Impact of Diuretic Therapy in the Treatment of Bronchopulmonary Dysplasia and Acute Kidney Injury in the Neonatal Population. Advances in Neonatal Care, 17, 337-346.
https://doi.org/10.1097/ANC.0000000000000427
[95]  Brion, L.P., Primhak, R.A. and Yong, W. (2006) Aerosolized Diuretics for Preterm Infants with (or Developing) Chronic Lung Disease. Cochrane Database of Systematic Reviews, 3, CD001694.
https://doi.org/10.1002/14651858.CD001694.pub2
[96]  Viscardi, R.M. and Kallapur, S.G. (2015) Role of Ureaplasma Respiratory Tract Colonization in Bronchopulmonary Dysplasia Pathogenesis: Current Concepts and Update. Clinics in Perinatology, 42, 719-738.
https://doi.org/10.1016/j.clp.2015.08.003
[97]  Wang, E.E.L., Ohlsson, A. and Kellner, J.D. (1995) Association of Ureaplasma Urealyticum Colonization with Chronic Lung Disease of Prematurity: Results of a Metaanalysis. The Journal of Pediatrics, 127, 640-644.
https://doi.org/10.1016/S0022-3476(95)70130-3
[98]  Ballard, H.O., Anstead, M.I. and Shook, L.A. (2007) Azithromycin in the Extremely Low Birth Weight Infant for the Prevention of Bronchopulmonary Dysplasia: A Pilot Study. Respiratory Research, 8, Article No. 41.
https://doi.org/10.1186/1465-9921-8-41
[99]  Nair, V., Loganathan, P. and Soraisham, A.S. (2014) Azithromycin and Other Macrolides for Prevention of Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Neonatology, 106, 337-347.
https://doi.org/10.1159/000363493
[100]  Viscardi, R.M., Terrin, M.L., Magder, L.S., et al. (2020) Randomised Trial of Azithromycin to Eradicate Ureaplasma in Preterm Infants. ADC Fetal & Neonatal Edition, 105, 615-622.
https://doi.org/10.1136/archdischild-2019-318122
[101]  Balany, J. and Bhandari, V. (2015) Understanding the Impact of Infection, Inflammation, and Their Persistence in the Pathogenesis of Bronchopulmonary Dysplasia. Frontiers in Medicine, 2, Article 90.
https://doi.org/10.3389/fmed.2015.00090
[102]  Lapcharoensap, W., Kan, P., Powers, R.J., et al. (2017) The Relationship of Nosocomial Infection Reduction to Changes in Neonatal Intensive Care Unit Rates of Bronchopulmonary Dysplasia. The Journal of Pediatrics, 180, 105-109.E1.
https://doi.org/10.1016/j.jpeds.2016.09.030
[103]  Ting, J.Y., Synnes, A., Roberts, A., et al. (2016) Association between Antibiotic Use and Neonatal Mortality and Morbidities in Very Low-Birth-Weight Infants without Culture-Proven Sepsisor Necrotizing Enterocolitis. JAMA Pediatrics, 170, 1181-1187.
https://doi.org/10.1001/jamapediatrics.2016.2132
[104]  Van Haaften, T., Byrne, R., Bonnet, S., et al. (2009) Airway Delivery of Mesenchymal Stem Cells Prevents Arrested Alveolar Growth in Neonatal Lung Injury in Rats. American Journal of Respiratory and Critical Care Medicine, 180, 1131-1142.
https://doi.org/10.1164/rccm.200902-0179OC
[105]  Tong, Y., Zuo, J. and Yue, D. (2021) Application Prospects of Mesenchymal Stem Cell Therapy for Bronchopulmonary Dysplasia and the Challenges Encountered. BioMed Research International, 2021, Article ID: 9983664.
https://doi.org/10.1155/2021/9983664
[106]  Batsali, A.K., Kastrinaki, M.C., Papadaki, H.A., et al. (2013) Mesenchymal Stem Cells Derived from Wharton’s Jelly of the Umbilical Cord: Biological Properties and Emerging Clinical Applications. Current Stem Cell Research & Therapy, 8, 144-155.
https://doi.org/10.2174/1574888X11308020005
[107]  Pierro, M., Ionescu, L., Montemurro, T., et al. (2013) Short-Term, Long-Term and Paracrine Effect of Human Umbilical Cord-Derived Stem Cells in Lung Injury Prevention and Repair in Experimental Bronchopulmonary Dysplasia. Thorax, 68, 475-484.
https://doi.org/10.1136/thoraxjnl-2012-202323
[108]  Chang, Y.S., Ahn, S.Y., Yoo, H.S., et al. (2014) Mesenchymal Stem Cells for Bronchopulmonary Dysplasia: Phase 1 Dose-Escalation Clinical Trial. The Journal of Pediatrics, 164, 966-972.E6.
https://doi.org/10.1016/j.jpeds.2013.12.011
[109]  Ahn, S.Y., Chang, Y.S., Kim, J.H., et al. (2017) Two-Year Follow-Up Outcomes of Premature Infants Enrolled in the Phase I Trial of Mesenchymal Stem Cells Transplantation for Bronchopulmonary Dysplasia. The Journal of Pediatrics, 185, 49-54.E2.
https://doi.org/10.1016/j.jpeds.2017.02.061
[110]  Ahn, S.Y., Chang, Y.S., Lee, M.H., et al. (2021) Stem Cells for Bronchopulmonary Dysplasia in Preterm Infants: A Randomized Controlled Phase II Trial. Stem Cells Translational Medicine, 10, 1129-1137.
https://doi.org/10.1002/sctm.20-0330
[111]  Poonyagariyagorn, H.K., Metzger, S., Dikeman, D., et al. (2014) Superoxide Dismutase 3 Dysregulation in a Murine Model of Neonatal Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 51, 380-390.
https://doi.org/10.1165/rcmb.2013-0043OC
[112]  Rosenfeld, W., Evans, H., Concepcion, L., et al. (1984) Prevention of Bronchopulmonary Dysplasia by Administration of Bovine Superoxide Dismutase in Preterm Infants with Respiratory Distress Syndrome. The Journal of Pediatrics, 105, 781-785.
https://doi.org/10.1016/S0022-3476(84)80307-8
[113]  Davis, J.M., Parad, R.B., Michele, T., et al. (2003) Pulmonary Outcome at 1 Year Corrected Age in Premature Infants Treated at Birth with Recombinant Human CuZn Superoxide Dismutase. Pediatrics, 111, 469-476.
https://doi.org/10.1542/peds.111.3.469
[114]  Solling, C. (2012) Organ-Protective and Immunomodulatory Effects of Erythropoietin an Update on Recent Clinical Trials. Basic & Clinical Pharmacology & Toxicology, 110, 113-121.
https://doi.org/10.1111/j.1742-7843.2011.00820.x
[115]  Luan, Y., Zhang, L., Chao, S., et al. (2016) Mesenchymal Stem Cells in Combination with Erythropoietin Repair Hyperoxia-Induced Alveoli Dysplasia Injury in Neonatal Mice via Inhibition of TGF-Beta1 Signaling. Oncotarget, 7, 47082-47094.
https://doi.org/10.18632/oncotarget.9314
[116]  Ananthan, A., Balasubramanian, H., Rao, S. and Patole, S. (2018) Clinical Outcomes Related to the Gastrointestinal Trophic Effffects of Erythropoietin in Preterm Neonates: A Systematic Review and Meta-Analysis. Advances in Nutrition, 9, 238-246.
https://doi.org/10.1093/advances/nmy005
[117]  Mandell, E.W., Kratimenos, P., Abman, S.H., et al. (2019) Drugs for the Prevention and Treatment of Bronchopulmonary Dysplasia. Clinics in Perinatology, 46, 291-310.
https://doi.org/10.1016/j.clp.2019.02.011
[118]  Hellström, A., Engström, E., Hård, A.L., et al. (2003) Postnatal Serum Insulin-Like Growth Factor I Deficiency Is Associated with Retinopathy of Prematurity and Other Complications of Premature Birth. Pediatrics, 112, 1016-1020.
https://doi.org/10.1542/peds.112.5.1016
[119]  Yang, K. and Dong, W. (2020) Perspectives on Probiotics and Bronchopulmonary Dysplasia. Frontiers in Pediatrics, 8, Article 570247.
https://doi.org/10.3389/fped.2020.570247
[120]  Tan, J.Y., Tang, Y.C. and Huang, J. (2020) Gut Microbiota and Lung Injury. Advances in Experimental Medicine and Biology, 1238, 55-72.
https://doi.org/10.1007/978-981-15-2385-4_5
[121]  Illiano, P., Brambilla, R. and Parolini, C. (2020) The Mutual Interplay of Gut Microbiota, Diet and Human Disease. The FEBS Journal, 287, 833-855.
https://doi.org/10.1111/febs.15217
[122]  Lal, C.V., Travers, C., Aghai, Z.H., et al. (2016) the Airway Microbiome at Birth. Scientific Reports, 6, Article No. 31023.
https://doi.org/10.1038/srep31023
[123]  Ryan, F.J., Drew, D.P., Douglas, C., et al. (2019) Changes in the Composition of the Gut Microbiota and the Blood Transcriptome in Preterm Infants at Less than 29 Weeks Gestation Diagnosed with Bronchopulmonary Dysplasia. mSystems, 4, E00484-19.
https://doi.org/10.1128/mSystems.00484-19
[124]  Chen, S.M., Lin, C.P. and Jan, M.S. (2020) Early Gut Microbiota Changes in Preterm Infants with Bronchopulmonary Dysplasia: A Pilot Case-Control Study. American Journal of Perinatology, 38, 1142-1149.
https://doi.org/10.1055/s-0040-1710554
[125]  Cantey, J.B., Huffffman, L.W., Subramanian, A., et al. (2016) Antibiotic Exposure and Risk for Death or Bronchopulmonary Dysplasia in Very Low Birth Weight Infants. The Journal of Pediatrics, 181, 289-293.E1.
https://doi.org/10.1016/j.jpeds.2016.11.002

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413