全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超长聚合物基复合材料油管力学性能的有限元计算
Finite Element Calculation of Mechanical Properties of Ultra-Long Polymer Matrix Composite Tubing

DOI: 10.12677/mos.2024.133220, PP. 2408-2419

Keywords: 深井,超长聚合物基复合材料油管,力学性能,有限元模拟
Deep Well
, Ultra-Long Polymer Matrix Composite Tubing, Mechanical Properties, Finite Element Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着新疆塔里木油田钻井深度的不断攀升,其地壳内部岩浆的化学成分更加复杂,采油油管的长度要求也不断提高,因此对油管的耐腐蚀性能和力学性能提出了越来越高的要求。传统的金属油管由于强度不足,耐腐蚀性能差而无法满足深井采油的需求。非金属聚合物基复合材料油管因具有可调节的力学性能及高的耐磨抗蚀性能而逐渐获得青睐。另外,井深的提高迫切需要超长的聚合物基复合材料油管,然而其力学性能却很难从实验上进行测量。因此采用有限元模拟计算开展油管力学性能的优化计算与预测具有十分重要意义。本文针对10,000米超长非金属聚合物基复合材料油管,采用一维线性单元技术Pipe288,开展油管力学性能的优化与计算,实现了10,000米超长非金属聚合物基复合材料油管力学性能的计算。本文首先根据多尺度协同增强复合材料油管的结构特点,建立了一维线性单元的力学模型,利用ANSYS软件,基于Pipe288单元,建立了10,000米超长非金属聚合物基复合材料油管的有限元模型,分析了油管在不同的工况下的应力、应变和变形的分布规律,探讨了油管的力学性能和可靠性的影响因素,验证了本文的模型和方法的准确性和有效性。
As the drilling depth of the Tarim Oilfield in Xinjiang Province continues to climb, the chemical composition of the magma inside the crust becomes more complex, and the length requirements of oil production tubing are also increasing. Therefore, higher and higher requirements are put forward for the corrosion resistance and mechanical properties of tubing. The traditional metal tubing cannot meet the needs of deep well oil production due to insufficient strength and poor corrosion resistance. Non-metallic polymer matrix composite tubing has gradually gained popularity due to its adjustable mechanical properties and high wear and corrosion resistance. In addition, the improvement of well depth urgently requires ultra-long polymer matrix composite tubing, but its mechanical properties are difficult to measure experimentally. Therefore, it is of great significance to use the finite element simulation to carry out the optimization calculation and andpre-diction of the mechanical properties of the tubing. In this paper, for the 10,000-meter ultra-long non-metallic polymer matrix composite oil pipeline, the one-dimensional linear unit technology Pipe288 is used to carry out the optimization and calculation of the mechanical properties of the oil pipeline, and the calculation of the mechanical properties of the 10,000-meter ultra-long non-metallic polymer matrix composite oil pipeline is realized. Firstly, according to the structural characteristics of the multi-scale collaboratively reinforced composite oil pipeline, the mechanical model of one-dimensional linear unit is established, and using ANSYS software, based on Pipe288 unit, the finite element model of 10,000 meters of ultra-long non-metallic polymer-based composite oil pipeline is established, and the distribution law of stress, strain, and deformation of the oil pipeline under different working conditions is analyzed, and the mechanical properties and reliability of the oil pipeline are explored, and reliability of the oil pipe, and verified the accuracy and validity of the model and method in this paper.

References

[1]  Dou, Y., Li, Z., Cheng, J., et al. (2020) Experimental Study on Corrosion Performance of Oil Tubing Steel in HPHT Flowing Media Containing O2 and CO2. Materials, 13, Article No. 5214.
https://doi.org/10.3390/ma13225214
[2]  Radhamani, A.V., Lau, H.C. and Ramakrishna, S. (2020) Nanocomposite Coatings on Steel for Enhancing the Corrosion Resistance: A Review. Journal of Composite Materials, 54, 681-701.
https://doi.org/10.1177/0021998319857807
[3]  陈小虎, 安兴芳, 杨中娜. 海上油气田注水井油管腐蚀失效分析[J]. 中国石油和化工标准与质量, 2023, 43(22): 51-54.
[4]  Adewole, J.K. and Muritala, K.B. (2019) Some Applications of Natural Polymeric Materials in Oilfield Operations: A Review. Journal of Petroleum Exploration and Production Technology, 9, 2297-2307.
https://doi.org/10.1007/s13202-019-0626-9
[5]  张冠军, 齐国权, 戚东涛. 非金属及复合材料在石油管领域应用现状及前景[J]. 石油科技论坛, 2017, 36(2): 26-31 37.
[6]  Sharma, A.K., Bhandari, R., Sharma, C., et al. (2022) Polymer Matrix Composites: A State of Art Review. Materials Today: Proceedings, 57, 2330-2333.
https://doi.org/10.1016/j.matpr.2021.12.592
[7]  Pan, Y., Iorga, L. and Pelegri, A.A. (2008) Analysis of 3D Random Chopped Fiber Reinforced Composites Using FEM and Random Sequential Adsorption. Computational Materials Science, 43, 450-461.
https://doi.org/10.1016/j.commatsci.2007.12.016
[8]  Wang, Z., Wang, X., Zhang, J., et al. (2011) Automatic Generation of Random Distribution of Fibers in Long-Fiber-Reinforced Composites and Mesomechanical Simulation. Materials & Design, 32, 885-891.
https://doi.org/10.1016/j.matdes.2010.07.002
[9]  Segurado, J. and Llorca, J. (2005) A Computational Micromechanics Study of the Effect of Interface Decohesion on the Mechanical Behavior of Composites. Acta Materialia, 53, 4931-4942.
https://doi.org/10.1016/j.actamat.2005.07.013
[10]  Wang, Y., Zhou, L., Wang, Z., et al. (2011) Analysis of Internal Stresses Induced by Strain Recovery in a Single SMA Fiber-Matrix Composite. Composites Part B: Engineering, 42, 1135-1143.
https://doi.org/10.1016/j.compositesb.2011.03.017
[11]  Murasawa, G., Tohgo, K. and Ishii, H. (2004) Deformation Behavior of NiTi/Polymer Shape Memory Alloy Composites—Experimental Verifications. Journal of Composite Materials, 38, 399-416.
https://doi.org/10.1177/0021998304040553
[12]  王树涛, 陈永浩, 于慧文, 等. 中原油田二氧化碳驱油井油管断裂分析[J]. 石油化工腐蚀与防护, 2022, 39(5): 56-60.
[13]  杨兰田, 邢明志, 张江江, 等. 复合材料井下油管的探索性研究[J]. 纤维复合材料, 2021, 38(1): 56-60.
[14]  沈观林, 胡更开, 刘彬. 复合材料力学[M]. 北京: 清华大学出版社, 2013.
[15]  梁基照. 聚合物基复合材料增强增韧理论[M]. 广州: 华南理工大学出版社, 2012.
[16]  Wang, L., Zhao, B., Wu, J.Y., et al. (2018) Experimental and Numerical Investigation on Mechanical Behaviors of Woven Fabric Composites under Off-Axial Loading. International Journal of Mechanical Sciences, 41, 157-167.
https://doi.org/10.1016/j.ijmecsci.2018.03.030
[17]  Zhang, C., Curiel-Sosa, J.L. and Bui, T.Q. (2018) Meso-Scale Progressive Damage Modeling and Life Prediction of 3D Braided Composites under Fatigue Tension Loading. Composite Structures, 201, 62-71.
https://doi.org/10.1016/j.compstruct.2018.06.021
[18]  Gu, Q.J., Quan, Z.Z., Yu, J.Y., et al. (2019) Structural Modeling and Mechanical Characterizing of Three-Dimensional Four-Step Braided Composites: A Review. Composite Structures, 207, 119-128.
https://doi.org/10.1016/j.compstruct.2018.09.065
[19]  唐梓健, 杨丽庭, 李彦涛, 等. 聚丙烯/玻璃纤维/滑石粉复合材料的制备及性能研究[J]. 塑料工业, 2017, 45(1): 80-83 124.
[20]  边晋石, 尹洪峰, 秦月, 等. 无机颗粒/碳纤维共增强聚酰胺6复合材料的制备与力学性能研究[J]. 中国塑料, 2019, 33(8): 32-37 48.
[21]  Bajaj, P., Jha, N.K. and Kumar, R.A. (1992) Effect of Coupling Agents on the Mechanical-Properties of Mica Epoxy and Glass-Fiber Mica Epoxy Composites. Journal of Applied Polymer Science, 44, 1921-1930.
https://doi.org/10.1002/app.1992.070441107

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133