全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

银纳米颗粒局域表面等离激元增强型Sb2S3光伏器件的模拟研究
Simulation Study of Localized Surface Plasmon Enhanced Sb2S3 Photovoltaic Devices with Silver Nanoparticles

DOI: 10.12677/mp.2024.143012, PP. 101-109

Keywords: Sb2S3光伏器件,时域有限差分法,局域表面等离激元
Sb2S3 Solar Cell
, FDTD, Localized Surface Plasmon

Full-Text   Cite this paper   Add to My Lib

Abstract:

当入射光与金属纳米颗粒相互作用时,会在颗粒表面引发局域表面等离激元共振,这一效应能够显著增强近场强度。这种增强作用可以有效提高Sb2S3材料的激发态密度,从而加强光伏器件对入射光的吸收能力,并进一步提升其光电转换效率。此外,金属纳米颗粒的引入还能利用前散射效应增加入射光在光吸收层内的传播路径,进一步增强光吸收。基于这些原理,本文设计了一种新型的Sb2S3光伏器件,其中集成了银纳米颗粒以实现局域表面等离激元的增强效应。选择银纳米颗粒是因为其成本较低且制备相对容易。所设计的器件结构为FTO/ZnO/CdS/Sb2S3/C/Au。为了深入了解器件的性能,我们采用时域有限差分法进行了数值模拟。模拟结果展示了器件在不同平面下的电场分布以及其对不同波长入射光的吸收率曲线。模拟数据表明,银纳米颗粒的引入有望显著提升Sb2S3光伏器件的性能,为实验制备高效能的Sb2S3光伏器件提供了理论支撑和指导。
When incident light interacts with metal nanoparticles, it can trigger localized surface plasmonreso-nance (LSPR) on the surface of the particles, significantly enhancing the near-field intensity. This enhancement effectively increases the excited state density of Sb2S3 material, thereby streng- thening the absorption capability of photovoltaic devices for incident light and further improving their photoelectric conversion efficiency. Additionally, the introduction of metal nanoparticles can utilize the forward scattering effect to increase the propagation path of incident light within the light absorption layer, further enhancing light absorption. Based on these principles, this paper designs a novel Sb2S3 photo-voltaic device that integrates silver nanoparticles to achieve the enhancement effect of LSPR. Silver nanoparticles are chosen due to their low cost and ease of preparation. The designed device structure is FTO/ZnO/CdS/Sb2S3/C/Au. To gain a deeper understanding of the device’s performance, we con-ducted numerical simulations using the finite-difference time-domain (FDTD) method. The simulation results the electric field distribution of the device at different planes and its absorption curves for different wavelengths of incident light. The simulation data suggests that the introduction of silver nanoparticles has the potential to significantly enhance the performance of Sb2S3 photovoltaic devices, providing theoretical support and guidance for the experimental preparation of high-efficiency Sb2S3 photovoltaic devices.

References

[1]  Barthwal, S., Singh, S., Chauhan, A.K., et al. (2023) Design and Simulation of CdS-Free Sb2(S, Se)3 Solar Cells with Efficiency Exceeding 20%. ACS Sustainable Chemistry & Engineering, 12, 947-958.
https://doi.org/10.1021/acssuschemeng.3c06210
[2]  Luo, D.Y., Su, R., Zhang, W., et al. (2020) Minimizing Non-Radiative Recombination Losses in Perovskite Solar Cells. Nature Reviews Materials, 5, 44-60.
https://doi.org/10.1038/s41578-019-0151-y
[3]  Lewis, N.S. and Nocera, D.G. (2006) Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proceedings of the National Academy of Sciences, 103, 15729-15735.
https://doi.org/10.1073/pnas.0603395103
[4]  Tang, R.F., Wang, X.M., Lian, W.T., et al. (2020) Hydrothermal Deposition of Antimony Selenosulfide Thin Films Enables Solar Cells with 10% Efficiency. Nature Energy, 5, 587-595.
https://doi.org/10.1038/s41560-020-0652-3
[5]  Ma, Y.Y., Tang, B.B., Lian, W.T., et al. (2020) Efficient Defect Passivation of Sb2Se3 Film by Tellurium Doping for High Performance Solar Cells. Journal of Materials Chemistry A, 8, 6510-6516.
https://doi.org/10.1039/D0TA00443J
[6]  Chen, J.W., Li, G.Y., Xu, Z.H., et al. (2024) Recent Advances and Prospects of Solution-Processed Efficient Sb2S3 Solar Cells. Advanced Functional Materials, 34, Article 2313676.
https://doi.org/10.1002/adfm.202313676
[7]  Choi, Y.C., Lee, D.U., Noh, J.H., et al. (2014) Highly Improved Sb2S3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy. Advanced Functional Materials, 24, 3587-3892.
https://doi.org/10.1002/adfm.201304238
[8]  Dhakras, P.A., Comfort, E. and Lee, J.U. (2019) Ideal p-n Diodes from Single-Walled Carbon Nanotubes for Use in Solar Cells: Beating the Detailed Balance Limit of Efficiency. ACS Applied Nano Materials, 2, 7496-7502.
https://doi.org/10.1021/acsanm.9b01424
[9]  Lu, L., Tan, R.F., Chen, D.F., et al. (2019) Surface Plasmon Assisted Laser Ablation of Stainless Steel. Nanotechnology, 30, Article 305401.
https://doi.org/10.1088/1361-6528/ab1806
[10]  Cheng, Y., Chen, C., Chen, X., et al. (2017) Considerably Enhanced Perovskite Solar Cells via the Introduction of Metallic Nanostructures. Journal of Materials Chemistry A, 5, 6515-6521.
https://doi.org/10.1039/C6TA10715J
[11]  Wang, J.Y., Hsu, F.C., Huang, J.Y., et al. (2015) Bifunctional Polymer Nanocomposites as Hole-Transport Layers for Efficient Light Harvesting: Application to Perovskite Solar Cells. ACS Applied Materials & Interfaces, 7, 27676-27684.
https://doi.org/10.1021/acsami.5b08157
[12]  Lee, D.S., Kim, W., Cha, B.G., et al. (2016) Self-Position of Au NPs in Perovskite Solar Cells: Optical and Electrical Contribution. ACS Applied Materials & Interfaces, 8, 449-454.
https://doi.org/10.1021/acsami.5b09365
[13]  Spinelli, P., Hebbink, M., De Waele, R., et al. (2011) Optical Impedance Matching Using Coupled Plasmonic Nanoparticle Arrays. Nano Letters, 11, 1760-1765.
https://doi.org/10.1021/nl200321u
[14]  Atwater, H.A. and Polman, A. (2010) Plasmonics for Improved Photovoltaic Devices. Nature Materials, 9, 205-213.
https://doi.org/10.1038/nmat2629
[15]  Mertz, J. (2000) Radiative Absorption, Fluorescence, and Scattering of a Classical Dipole near a Lossless Interface: A Unified Description. Journal of the Optical Society of America B, 17, 1906-1913.
https://doi.org/10.1364/JOSAB.17.001906
[16]  Zubko, E., Kimura, H., Shkuratov, Y., et al. (2009) Effect of Absorption on Light Scattering by Agglomerated Debris Particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1741-1749.
https://doi.org/10.1016/j.jqsrt.2008.12.006
[17]  Im, J.-H., Kim, H.-S. and Park, N.-G. (2014) Morphology-Photovoltaic Property Correlation in Perovskite Solar Cells: One-Step versus Two-Step Deposition of CH3NH3PbI3. APL Materials, 2, Article 081510.
https://doi.org/10.1063/1.4891275
[18]  Yu, Y.T., Zhang, Q.H. and Xu, B.Q. (2004) Shape-Controlled Syntheses of Metal Nanoparticles. Progress in Chemistry, 16, 520-527.
[19]  Jang, T., Youn, H., Shin, Y.J., et al. (2014) Transparent and Flexible Polarization-Independent Microwave Broadband Absorber. ACS Photonics, 1, 279-284.
https://doi.org/10.1021/ph400172u
[20]  Wu, Y.Z., Ren, S.M., Xu, X.L., et al. (2014) Engineered Fluorescence of Quantum Dots via Plasmonic Nanostructures. Solar Energy Materials and Solar Cells, 126, 113-119.
https://doi.org/10.1016/j.solmat.2014.03.050
[21]  Lu, L., Zeng, W.Q., Hu, S.S., et al. (2018) Polarization-Dependent Fluorescence of CdSe/ZnS Quantum Dots Coupling to a Single Gold-Silver Alloy Nanotube. Journal of Alloys and Compounds, 731, 753-759.
https://doi.org/10.1016/j.jallcom.2017.10.053
[22]  Li, Z.Q., Liang, X.Y., Li, G., et al. (2019) 9.2%-Efficient Core-Shell Structured Antimony Selenide Nanorod Array Solar Cells. Nature Communications, 10, Article No. 125.
https://doi.org/10.1038/s41467-018-07903-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133