全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合空洞特征增强与改进HR-Net的胰腺分割方法
Pancreas Segmentation Method Combining Atrous Feature Enhancement and Improved HR-Net

DOI: 10.12677/mos.2024.133213, PP. 2324-2338

Keywords: 医学图像,胰腺分割,高分辨率网络,空洞特征增强
Medical Imaging
, Pancreas Segmentation, High Resolution Networks, Atrous Feature Enhancement

Full-Text   Cite this paper   Add to My Lib

Abstract:

在胰腺癌辅助诊断领域,精确的胰腺分割是实现高效疾病诊断的基石,同时也是医学图像处理领域中一项具有挑战性的任务。现有的主流胰腺分割方法大多依赖于U型的编码–解码路径,然而该架构在上下采样的过程中,容易导致关键空间信息的丢失,影响分割准确率。针对上述问题,本文提出了一种结合空洞特征增强与改进HR-Net的胰腺分割方法。首先,对原有的二维HR-Net进行三维化改造,以便更全面地挖掘三维医学图像内蕴的空间信息。其次,设计多尺度空洞特征增强模块以重构网络深层结构,并行捕获广泛的多尺度深度特征,并采用通道加权对重要特征赋予更高的关注度。接着,在模型多分辨率融合模块之后引入空间注意力机制,使模型更加专注于融合特征图中的重要空间区域。最后,本文提出分层渐进特征融合头,以缓解传统分割头在大幅度上采样时遭受的信息丢失。实验结果表明,在NIH- Pancreas数据集上测试的召回率、准确率和Dice相似系数分为84.5%、86.3%、85.6%,在分割性能上优于现有的主流方法。本文方法能有效保留胰腺细节特征,并展现出较强的特征提取能力,对腹部CT图像中的胰腺器官有较好的分割结果。
In the field of pancreatic cancer auxiliary diagnosis, accurate pancreatic segmentation is the cornerstone for efficient disease diagnosis and also a challenging task in the field of medical image processing. The existing mainstream pancreatic segmentation methods mostly rely on a U-shaped encoding-decoding path; however, this architecture tends to lose critical spatial information during the upsampling and downsampling processes, affecting segmentation accuracy. To address these issues, this paper proposes a pancreatic segmentation method that combines atrous feature enhancement with an improved HR-Net. Firstly, the original two-dimensional HR-Net is transformed into three dimensions to more comprehensively mine the spatial information inherent in three-dimensional medical images. Secondly, a multi-scale atrous feature enhancement module is designed to reconstruct the deep structure of the network, capturing a wide range of multi-scale deep features in parallel and assigning greater attention to important features through channel weighting. Subsequently, a spatial attention mechanism is introduced after the model's multi-resolution fusion module, making the model more focused on important spatial regions in the merged feature maps. Lastly, this paper proposes a hierarchical progressive feature fusion head to alleviate the information loss suffered by traditional segmentation heads during significant upsampling. Experimental results show that on the NIH- Pancreas dataset, the recall rate, accuracy, and Dice similarity coefficient are 84.5%, 86.3%, and 85.6%, respectively, surpassing existing mainstream methods in segmentation performance. The method proposed in this paper can effectively preserve pancreatic detail features and demonstrates strong feature extraction capability, yielding better segmentation results for pancreatic organs in abdominal CT images.

References

[1]  Zheng, Y., Liu, D., Georgescu, B., et al. (2017) Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local versus Global Image Context. In: Lu, L., Zheng, Y., Carneiro, G. and Yang, L., Eds., Deep Learning and Convolutional Neural Networks for Medical Image Computing, Springer, Cham, 241-255.
https://doi.org/10.1007/978-3-319-42999-1_14
[2]  Wang, Z., Bhatia, K.K., Glocker, B., et al. (2014) Geodesic Patch-Based Segmentation. In: Golland, P., Hata, N., Barillot, C., Hornegger, J. and Howe, R., Eds., Medical Image Computing and Computer-Assisted InterventionMICCAI 2014, Springer, Cham, 666-673.
https://doi.org/10.1007/978-3-319-10404-1_83
[3]  Wolz, R., Chu, C., Misawa, K., et al. (2013) Automated Abdominal Multi-Organ Segmentation with Subject-Specific Atlas Generation. IEEE Transactions on Medical Imaging, 32, 1723-1730.
https://doi.org/10.1109/TMI.2013.2265805
[4]  Chu, C., Oda, M., Kitasaka, T., et al. (2013) Multi-Organ Segmentation Based on Spatially-Divided Probabilistic Atlas from 3D Abdominal CT Images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C. and Navab, N., Eds., Medical Image Computing and Computer-Assisted InterventionMICCAI 2013, Springer, Berlin, 165-172.
https://doi.org/10.1007/978-3-642-40763-5_21
[5]  Ronneberger, O., Fischer, P. and Brox, T. (2015) UNet: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. and Frangi, A., Eds., Medical Image Computing and Computer-Assisted InterventionMICCAI 2015, Springer, Cham, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28
[6]  曹路洋, 李建微. 面向深度学习的胰腺医学图像分割方法研究进展[J]. 小型微型计算机系统, 2022, 43(12): 2591-2604.
[7]  Gibson, E., Giganti, F., Hu, Y., et al. (2018) Automatic Multi-Organ Segmentation on Abdominal CT with Dense V-Networks. IEEE Transactions on Medical Imaging, 37, 1822-1834.
https://doi.org/10.1109/TMI.2018.2806309
[8]  Sun, K., Xiao, B., Liu, D., et al. (2019) Deep High-Resolution Representation Learning for Human Pose Estimation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 15-20 June 2019, 5686-5696.
https://doi.org/10.1109/CVPR.2019.00584
[9]  Farag, A., Lu, L., Roth, H.R., et al. (2016) A Bottom-Up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling. IEEE Transactions on Image Processing, 26, 386-399.
https://doi.org/10.1109/TIP.2016.2624198
[10]  Zheng, H., Chen, Y., Yue, X., et al. (2020) Deep Pancreas Segmentation with Uncertain Regions of Shadowed Sets. Magnetic Resonance Imaging, 68, 45-52.
https://doi.org/10.1016/j.mri.2020.01.008
[11]  Liu, Z., Su, J., Wang, R., et al. (2021) Pancreas Co-Segmentation Based on Dynamic ROI Extraction and VGGUNet. Expert Systems with Applications, 192, Article ID: 116444.
https://doi.org/10.1016/j.eswa.2021.116444
[12]  Huang, M.L. and Wu, Y.Z. (2022) Semantic Segmentation of Pancreatic Medical Images by Using Convolutional Neural Network. Biomedical Signal Processing and Control, 73, Article ID: 103458.
https://doi.org/10.1016/j.bspc.2021.103458
[13]  Milletari, F., Navab, N. and Ahmadi, S.A. (2016) V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV), Stanford, 25-28 October 2016, 565-571.
https://doi.org/10.1109/3DV.2016.79
[14]  Oktay, O., Schlemper, J., Folgoc, L.L., et al. (2018) Attention UNet: Learning Where to Look for the Pancreas. arXiv: 1804.03999.
[15]  Nishio, M., Noguchi, S. and Fujimoto, K. (2020) Automatic Pancreas Segmentation Using Coarse-Scaled 2D Model of Deep Learning: Usefulness of Data Augmentation and Deep UNet. Applied Sciences, 10, Article 3360.
https://doi.org/10.3390/app10103360
[16]  Li, M., Lian, F., Wang, C., et al. (2021) Accurate Pancreas Segmentation Using Multi-Level Pyramidal Pooling Residual UNet with Adversarial Mechanism. BMC Medical Imaging, 21, Article No. 168.
https://doi.org/10.1186/s12880-021-00694-1
[17]  Tian, M., He, J., Yu, X., et al. (2021) MCMC Guided CNN Training and Segmentation for Pancreas Extraction. IEEE Access, 9, 90539-90554.
https://doi.org/10.1109/ACCESS.2021.3070391
[18]  马豪, 刘彦, 张俊然. 基于模型压缩与重构UNet的胰腺分割[J]. 计算机工程与设计, 2022(7): 43.
[19]  Lu, L., Jian, L., Luo, J., et al. (2019) Pancreatic Segmentation via Ringed Residual UNet. IEEE Access, 7, 172871-172878.
https://doi.org/10.1109/ACCESS.2019.2956550
[20]  Li, W., Wu, X., Hu, Y., et al. (2021) High-Resolution Recurrent Gated Fusion Network for 3d Pancreas Segmentation. 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, 18-22 July 2021, 1-7.
https://doi.org/10.1109/IJCNN52387.2021.9534042
[21]  Hu, J., Shen, L. and Sun, G. (2018) Squeeze-And-Excitation Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 7132-7141.
https://doi.org/10.1109/CVPR.2018.00745
[22]  Roth, H.R., Lu, L., Farag, A., et al. (2015) Deeporgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation. Medical Image Computing and Computer-Assisted InterventionMICCAI 2015: 18th International Conference, Munich, 5-9 October 2015, 556-564.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133