|
基于微流控和深度学习的细胞分割方法研究
|
Abstract:
微流体技术可为细胞实验提供精准可控的微环境,克服了传统细胞迁移实验无法整合复杂环境因素的缺陷。使用微流控芯片可以产生大量细胞图像数据,但如何准确、快速的分析细胞数据是一项重要且难度大的任务。针对此问题,本文设计一款微流控细胞迁移芯片,并在芯片内设计独特的微柱阻挡结构,确保细胞在迁移前位于同一侧,并减少细胞重叠现象。使用多物理场仿真软件进行流体仿真,结果证实该芯片模型可以产生诱导细胞迁移的稳定的浓度梯度。最后经过细胞迁移实验,采集足够的实验数据。借助深度学习工具针对该类型的数据构建一种细胞图像的分析工具,以满足快速、准确的分析要求。经过测试构建的数据分析工具,在细胞分割方面准确度可达95.1%。
Microfluidic technology can provide a precise and controllable microenvironment for cell experiments, overcoming the shortcomings of traditional cell migration experiments that cannot integrate complex environmental factors. A large amount of cell image data can be generated using microfluidic chips, but how to analyze the cell data accurately and rapidly is an important and difficult task. To address this problem, this paper designs a microfluidic cell migration chip with a unique micropillar blocking structure within the chip to ensure that the cells are located on the same side before migration and to reduce the cell overlap phenomenon. Fluid simulation was performed using multi-physics Field Simulation Software, and the results confirmed that the chip model could generate a stable concentration gradient that induced cell migration. Finally, cell migration experiments were performed to enable the collection of sufficient experimental data. With the help of deep learning tools to construct an analysis tool for cell images for this type of data to meet the requirement of fast and accurate analysis. The tested constructed data analysis tool is accurate up to 95.1% in cell segmentation.
[1] | 林炳承, 秦建华. 微流控芯片实验室[J]. 色谱, 2005, 23(5): 456-463. |
[2] | 王立凯, 冯喜增. 微流控芯片技术在生命科学研究中的应用[J]. 化学进展, 2005, 17(3): 482-498. |
[3] | 刘文明, 李立, 任丽, 等. 微流控细胞芯片生命分析应用多元化[J]. 分析化学, 2012, 40(1): 24-31. |
[4] | 韩思奇, 王蕾. 图像分割的阈值法综述[J]. 系统工程与电子技术, 2002, 24(6): 91-94. |
[5] | 林开颜, 吴军辉, 徐立鸿. 彩色图像分割方法综述[J]. 中国图象图形学报, 2005, 10(1): 1-10. |
[6] | 陆剑锋, 林海, 潘志庚. 自适应区域生长算法在医学图像分割中的应用[J]. 计算机辅助设计与图形学学报, 2005, 17(10): 2168-2173. |
[7] | 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468. |
[8] | 梁新宇, 林洗坤, 权冀川, 等. 基于深度学习的图像实例分割技术研究进展[J]. 电子学报, 2020, 48(12): 2476-2486. |
[9] | 田娟秀, 刘国才, 谷珊珊, 等. 医学图像分析深度学习方法研究与挑战[J]. 自动化学报, 2018, 44(3): 401-424. |
[10] | Alhazmi, K., Alsumari, W., Seppo, I., et al. (2021) Effects of Annotation Quality on Model Performance. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, 13-16 April 2021, 63-67. https://doi.org/10.1109/ICAIIC51459.2021.9415271 |
[11] | 余滨, 李绍滋, 徐素霞, 等. 深度学习: 开启大数据时代的钥匙[J]. 工程研究: 跨学科视野中的工程, 2014, 6(3): 233-243. |
[12] | 方肇伦. 微流控分析芯片[M]. 北京: 科学出版社, 2003. |
[13] | 刘琳, 厉坤鹏, 胡志敏, 等. 微流控芯片在细胞分选中的分析技术进展[J]. 中国细胞生物学学报, 2013, 35(5): 727-733. |
[14] | 蔡绍皙, 黎昌莉. 微流控与细胞迁移技术的研究进展[J]. 生物技术通报, 2010(3): 72-75. |
[15] | Sun, H., Burton, H.V. and Huang, H. (2021) Machine Learning Applications for Building Structural Design and Performance Assessment: State-of-the-Art Review. Journal of Building Engineering, 33, Article 101816. https://doi.org/10.1016/j.jobe.2020.101816 |
[16] | Voulodimos, A., et al. (2018) Deep Learning for Computer Vision: A Brief Review. Computational Intelligence and Neuroscience, 2018, Article ID: 7068349. https://doi.org/10.1155/2018/7068349 |
[17] | Sun, J., Tarnok, A. and Su, X. (2020) Deep Learning-Based Single-Cell Optical Image Studies. Cytometry Part A, 97, 226-240. https://doi.org/10.1002/cyto.a.23973 |
[18] | Moen, E., et al. (2019) Deep Learning for Cellular Image Analysis. Nature Methods, 16, 1233-1246. https://doi.org/10.1038/s41592-019-0403-1 |
[19] | Kirillov, A., Mintun, E., Ravi, N., et al. (2023) Segment Anything. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, 1-6 October 2023, 3992-4003. https://doi.org/10.1109/ICCV51070.2023.00371 |