|
Pharmacy Information 2024
肝窦内皮细胞在NAFLD疾病中的作用
|
Abstract:
非酒精性脂肪性肝病(Non-alcoholic fatty liver disease, NAFLD)是一种发病率较高的常见慢性肝病,其发病机制较为复杂,为药物研发带来困难。肝窦内皮细胞(liver sinusoidal endothelial cells, LSECs)位于肝血窦表面,是肝脏与血液接触的第一道防线,也是肝脏中含量最多的非实质细胞。LSECs作为肝脏内高度特化的内皮细胞,由于其独特的结构以及功能在NAFLD的发生与进展中都扮演了重要的角色,并且可以为NAFLD药物研发带来新思路。本文主要针对LSECs及其功能障碍在NAFLD中参与到的发病机制进行综述,并对以改善LSECs功能障碍为靶点的药物进行介绍。
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with a high incidence rate, and its pathogenesis is complex, posing challenges for drug development. Liver sinusoidal endothelial cells (LSECs) are located on the surface of the liver sinusoids, serving as the first line of defense between the liver and blood, and they are the most abundant non-parenchymal cells in the liver. LSECs, as highly specialized endothelial cells in the liver, play an important role in the occurrence and progression of NAFLD due to their unique structure and function, offering new insights for NAFLD drug development. This review focuses on the involvement of LSECs and their functional impairments in the pathogenesis of NAFLD, and introduces drugs that target improving LSECs dysfunction.
[1] | Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544. https://doi.org/10.1016/j.jhep.2018.10.033 |
[2] | Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M., et al. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922. https://doi.org/10.1038/s41591-018-0104-9 |
[3] | Eslam, M., Sanyal, A.J. and George, J. (2020) MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology, 158, 1999-2014. https://doi.org/10.1053/j.gastro.2019.11.312 |
[4] | Riazi, K., Azhari, H., Charette, J.H., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology and Hepatology, 7, 851-861. https://doi.org/10.1016/S2468-1253(22)00165-0 |
[5] | Fernández, M., Semela, D., Bruix, J., et al. (2009) Angiogenesis in Liver Disease. Journal of Hepatology, 50, 604-620. https://doi.org/10.1016/j.jhep.2008.12.011 |
[6] | Nasiri-Ansari, N., Androutsakos T., Flessa, C.M., et al. (2022) Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells, 11, Article 2511. https://doi.org/10.3390/cells11162511 |
[7] | Aird, W.C. (2007) Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms. Circulation Research, 100, 158-173. https://doi.org/10.1161/01.RES.0000255691.76142.4a |
[8] | Lafoz, E., Ruart, M., Anton, A., et al. (2020) The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells, 9, Article 929. https://doi.org/10.3390/cells9040929 |
[9] | Sun, X. and Harris, E.N. (2020) New Aspects of Hepatic Endothelial Cells in Physiology and Nonalcoholic Fatty Liver Disease. American Journal of Physiology-Cell Physiology, 318, C1200-C1213. https://doi.org/10.1152/ajpcell.00062.2020 |
[10] | Wisse, E. (1970) An Electron Microscopic Study of the Fenestrated Endothelial Lining of Rat Liver Sinusoids. Journal of Ultrastructure Research, 31, 125-150. https://doi.org/10.1016/S0022-5320(70)90150-4 |
[11] | DeLeve, L.D., Wang, X., Hu, L., et al. (2004) Rat Liver Sinusoidal Endothelial Cell Phenotype Is Maintained by Paracrine and Autocrine Regulation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 287, G757-G763. https://doi.org/10.1152/ajpgi.00017.2004 |
[12] | May, D., Djonov, V., Zamir, G., et al. (2011) A Transgenic Model for Conditional Induction and Rescue of Portal Hypertension Reveals a Role of VEGF-Mediated Regulation of Sinusoidal Fenestrations. PLOS ONE, 6, e21478. https://doi.org/10.1371/journal.pone.0021478 |
[13] | Xie, G., Wang, X., Wang, L., et al. (2012) Role of Differentiation of Liver Sinusoidal Endothelial Cells in Progression and Regression of Hepatic Fibrosis in Rats. Gastroenterology, 142, 918-927. https://doi.org/10.1053/j.gastro.2011.12.017 |
[14] | Cogger, V.C., Hilmer, S.N., Sullivan, D., et al. (2006) Hyperlipidemia and Surfactants: The Liver Sieve Is a Link. Atherosclerosis, 189, 273-281. https://doi.org/10.1016/j.atherosclerosis.2005.12.025 |
[15] | Iwakiri, Y. and Kim, M.Y. (2015) Nitric Oxide in Liver Diseases. Trends in Pharmacological Sciences, 36, 524-536. https://doi.org/10.1016/j.tips.2015.05.001 |
[16] | Deleve, L.D., Wang, X. and Guo, Y. (2008) Sinusoidal Endothelial Cells Prevent Rat Stellate Cell Activation and Promote Reversion to Quiescence. Hepatology, 48, 920-930. https://doi.org/10.1002/hep.22351 |
[17] | Shetty, S., Lalor, P.F. and Adams, D.H. (2018) Liver Sinusoidal Endothelial Cells-Gatekeepers of Hepatic Immunity. Nature Reviews Gastroenterology & Hepatology, 15, 555-567. https://doi.org/10.1038/s41575-018-0020-y |
[18] | Wu, J., Meng, Z., Jiang, M., et al. (2010) Toll-Like Receptor-Induced Innate Immune Responses in Non-Parenchymal Liver Cells Are Cell Type-Specific. Immunology, 129, 363-374. https://doi.org/10.1111/j.1365-2567.2009.03179.x |
[19] | Wohlleber, D. and Knolle, P.A. (2016) The Role of Liver Sinusoidal Cells in Local Hepatic Immune Surveillance. Clinical & Translational Immunology, 5, e117. https://doi.org/10.1038/cti.2016.74 |
[20] | Poisson, J., Lemoinne, S., Boulanger, C., et al. (2017) Liver Sinusoidal Endothelial Cells: Physiology and Role in Liver Diseases. Journal of Hepatology, 66, 212-227. https://doi.org/10.1016/j.jhep.2016.07.009 |
[21] | Meyer, J., Balaphas, A., Fontana, P., et al. (2020) Platelet Interactions with Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells Lead to Hepatocyte Proliferation. Cells, 9, Article 1243. https://doi.org/10.3390/cells9051243 |
[22] | Hilscher, M.B., Sehrawat, T., Arab, J.P., et al. (2019) Mechanical Stretch Increases Expression of CXCL1 in Liver Sinusoidal Endothelial Cells to Recruit Neutrophils, Generate Sinusoidal Microthombi, and Promote Portal Hypertension. Gastroenterology, 157, 193-209. https://doi.org/10.1053/j.gastro.2019.03.013 |
[23] | Yang, H., Li, N., Du, Y., et al. (2017) Neutrophil Adhesion and Crawling Dynamics on Liver Sinusoidal Endothelial Cells under Shear Flow. Experimental Cell Research, 351, 91-99. https://doi.org/10.1016/j.yexcr.2017.01.002 |
[24] | Velarde-Ruiz Velasco, J.A., García-Jiménez, E.S., García-Zerme?o, K.R., et al. (2019) Extrahepatic Complications of Non-Alcoholic Fatty Liver Disease: Its Impact Beyond the Liver. Revista de Gastroenterología de México (English Edition), 84, 472-481. https://doi.org/10.1016/j.rgmxen.2019.05.004 |
[25] | Ogresta, D., Mrzljak, A., Cigrovski Berkovic, M., et al. (2022) Coagulation and Endothelial Dysfunction Associated with NAFLD: Current Status and Therapeutic Implications. Journal of Clinical and Translational Hepatology, 10, 339-355. https://doi.org/10.14218/JCTH.2021.00268 |
[26] | Stahl, E.P., Dhindsa, D.S., Lee, S.K., et al. (2019) Nonalcoholic Fatty Liver Disease and the Heart: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73, 948-963. https://doi.org/10.1016/j.jacc.2018.11.050 |
[27] | Fraser, R., Dobbs, B.R. and Rogers, G.W. (1995) Lipoproteins and the Liver Sieve: The Role of the Fenestrated Sinusoidal Endothelium in Lipoprotein Metabolism, Atherosclerosis, and Cirrhosis. Hepatology, 21, 863-874. https://doi.org/10.1002/hep.1840210337 |
[28] | Pasarín, M., La Mura, V., Gracia-Sancho, J., et al. (2012) Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD. PLOS ONE, 7, e32785. https://doi.org/10.1371/journal.pone.0032785 |
[29] | Wang, X.-K. and Peng, Z.-G. (2021) Targeting Liver Sinusoidal Endothelial Cells: An Attractive Therapeutic Strategy to Control Inflammation in Nonalcoholic Fatty Liver Disease. Frontiers in Pharmacology, 12, Article 655557. https://doi.org/10.3389/fphar.2021.655557 |
[30] | Furuta, K., Guo, Q., Hirsova, P., et al. (2020) Emerging Roles of Liver Sinusoidal Endothelial Cells in Nonalcoholic Steatohepatitis. Biology, 9, Article 395. https://doi.org/10.3390/biology9110395 |
[31] | Federico, A., Dallio, M., Masarone, M., et al. (2016) The Epidemiology of Non-Alcoholic Fatty Liver Disease and Its Connection with Cardiovascular Disease: Role of Endothelial Dysfunction. European Review for Medical and Pharmacological Sciences, 20, 4731-4741. |
[32] | Maslak, E., Gregorius, A. and Chlopicki, S. (2015) Liver Sinusoidal Endothelial Cells (LSECs) Function and NAFLD; NO-Based Therapy Targeted to the Liver. Pharmacological Reports, 67, 689-694. https://doi.org/10.1016/j.pharep.2015.04.010 |
[33] | Targher, G., Byrne, C.D., Lonardo, A., et al. (2016) Non-Alcoholic Fatty Liver Disease and Risk of Incident Cardiovascular Disease: A Meta-Analysis. Journal of Hepatology, 65, 589-600. https://doi.org/10.1016/j.jhep.2016.05.013 |
[34] | Schierwagen, R., Uschner, F.E., Magdaleno, F., et al. (2017) Rationale for the Use of Statins in Liver Disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 312, G407-G412. https://doi.org/10.1152/ajpgi.00441.2016 |
[35] | Schleicher, J., Guthke, R., Dahmen, U., et al. (2014) A Theoretical Study of Lipid Accumulation in the Liver-Implications for Nonalcoholic Fatty Liver Disease. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1841, 62-69. https://doi.org/10.1016/j.bbalip.2013.08.016 |
[36] | Sun, C.K., Zhang, X.Y., Zimmermann, A., et al. (2001) Effect of Ischemia-Reperfusion Injury on the Microcirculation of the Steatotic Liver of the Zucker Rat. Transplantation, 72, 1625-1631. https://doi.org/10.1097/00007890-200111270-00008 |
[37] | Hasegawa, T., Ito, Y., Wijeweera, J., et al. (2007) Reduced Inflammatory Response and Increased Microcirculatory Disturbances during Hepatic Ischemia-Reperfusion Injury in Steatotic Livers of ob/ob Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292, G1385-G1395. https://doi.org/10.1152/ajpgi.00246.2006 |
[38] | Teoh, N.C., Williams, J., Hartley, J., et al. (2010) Short-Term Therapy with Peroxisome Proliferation-Activator Receptor-Alpha Agonist Wy-14,643 Protects Murine Fatty Liver Against Ischemia-Reperfusion Injury. Hepatology, 51, 996-1006. https://doi.org/10.1002/hep.23420 |
[39] | Farrell, G.C., Teoh, N.C. and McCuskey, R.S. (2008) Hepatic Microcirculation in Fatty Liver Disease. The Anatomical Record, 291, 684-692. https://doi.org/10.1002/ar.20715 |
[40] | Davies, P.F. (1995) Flow-Mediated Endothelial Mechanotransduction. Physiological Reviews, 75, 519-560. https://doi.org/10.1152/physrev.1995.75.3.519 |
[41] | Gonzalez-Paredes, F.J., Hernández Mesa, G., Morales Arraez, D., et al. (2016) Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease. PLOS ONE, 11, e0156650. https://doi.org/10.1371/journal.pone.0156650 |
[42] | Fernandez, M. (2015) Molecular Pathophysiology of Portal Hypertension. Hepatology, 61, 1406-1415. https://doi.org/10.1002/hep.27343 |
[43] | Cogger, V.C., Mohamad, M., Solon-Biet, S.M., et al. (2016) Dietary Macronutrients and the Aging Liver Sinusoidal Endothelial Cell. American Journal of Physiology-Heart and Circulatory Physiology, 310, H1064-H1070. https://doi.org/10.1152/ajpheart.00949.2015 |
[44] | Peng, Q., Zhang, Q., Xiao, W., et al. (2014) Protective Effects of Sapindus Mukorossi Gaertn against Fatty Liver Disease Induced by High Fat Diet in Rats. Biochemical and Biophysical Research Communications, 450, 685-691. https://doi.org/10.1016/j.bbrc.2014.06.035 |
[45] | Zhang, Q., Liu, J., Liu, J., et al. (2014) oxLDL Induces Injury and Defenestration of Human Liver Sinusoidal Endothelial Cells via LOX1. Journal of Molecular Endocrinology, 53, 281-293. https://doi.org/10.1530/JME-14-0049 |
[46] | Hammoutene, A., Rautou, P.E. (2019) Role of Liver Sinusoidal Endothelial Cells in Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 70, 1278-1291. https://doi.org/10.1016/j.jhep.2019.02.012 |
[47] | Miyao, M., Kotani, H., Ishida, T., et al. (2015) Pivotal Role of Liver Sinusoidal Endothelial Cells in NAFLD/NASH Progression. Laboratory Investigation, 95, 1130-1144. https://doi.org/10.1038/labinvest.2015.95 |
[48] | Herrnberger, L., Hennig, R., Kremer, W., et al. (2014) Formation of Fenestrae in Murine Liver Sinusoids Depends on Plasmalemma Vesicle-Associated Protein and Is Required for Lipoprotein Passage. PLOS ONE, 9, e115005. https://doi.org/10.1371/journal.pone.0115005 |
[49] | Chen, L., Gu, T., Li, B., et al. (2019) Delta-Like Ligand 4/DLL4 Regulates the Capillarization of Liver Sinusoidal Endothelial Cell and Liver Fibrogenesis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1866, 1663-1675. https://doi.org/10.1016/j.bbamcr.2019.06.011 |
[50] | Bonnardel, J., T’Jonck, W., Gaublomme, D., et al. (2019) Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 51, 638-654. https://doi.org/10.1016/j.immuni.2019.08.017 |
[51] | Desroches-Castan, A., Tillet, E., Ricard, N., et al. (2019) Bone Morphogenetic Protein 9 Is a Paracrine Factor Controlling Liver Sinusoidal Endothelial Cell Fenestration and Protecting against Hepatic Fibrosis. Hepatology, 70, 1392-1408. https://doi.org/10.1002/hep.30655 |
[52] | Carambia, A., Freund, B., Schwinge, D., et al. (2014) TGF-β-Dependent Induction of CD4 CD25 Foxp3 Tregs by Liver Sinusoidal Endothelial Cells. Journal of Hepatology, 61, 594-599. https://doi.org/10.1016/j.jhep.2014.04.027 |
[53] | Tateya, S., Rizzo, N.O., Handa, P., et al. (2011) Endothelial NO/cGMP/VASP Signaling Attenuates Kupffer Cell Activation and Hepatic Insulin Resistance Induced by High-Fat Feeding. Diabetes, 60, 2792-2801. https://doi.org/10.2337/db11-0255 |
[54] | McMahan, R.H., Porsche, C.E., Edwards, M.G., et al. (2016) Free Fatty Acids Differentially Downregulate Chemokines in Liver Sinusoidal Endothelial Cells: Insights into Non-Alcoholic Fatty Liver Disease. PLOS ONE, 11, e0159217. https://doi.org/10.1371/journal.pone.0159217 |
[55] | Weston, C.J., Shepherd, E.L., Claridge, L.C., et al. (2015) Vascular Adhesion Protein-1 Promotes Liver Inflammation and Drives Hepatic Fibrosis. Journal of Clinical Investigation, 125, 501-520. https://doi.org/10.1172/JCI73722 |
[56] | Tomita, K., Tamiya, G., Ando, S., et al. (2006) Tumour Necrosis Factor Alpha Signalling through Activation of Kupffer Cells Plays an Essential Role in Liver Fibrosis of Non-Alcoholic Steatohepatitis in Mice. Gut, 55, 415-424. https://doi.org/10.1136/gut.2005.071118 |
[57] | Miyachi, Y., Tsuchiya, K., Komiya, C., et al. (2017) Roles for Cell-Cell Adhesion and Contact in Obesity-Induced Hepatic Myeloid Cell Accumulation and Glucose Intolerance. Cell Reports, 18, 2766-2779. https://doi.org/10.1016/j.celrep.2017.02.039 |
[58] | Dela Pe?a, A., Leclercq, I., Field, J., et al. (2005) NF-KappaB Activation, Rather than TNF, Mediates Hepatic Inflammation in a Murine Dietary Model of Steatohepatitis. Gastroenterology, 129, 1663-1674. https://doi.org/10.1053/j.gastro.2005.09.004 |
[59] | Marra, F. and Tacke, F. (2014) Roles for Chemokines in Liver Disease. Gastroenterology, 147, 577-594. https://doi.org/10.1053/j.gastro.2014.06.043 |
[60] | Nagata, N., Chen, G., Xu, L., et al. (2022) An Update on the Chemokine System in the Development of NAFLD. Medicina, 58, Article 761. https://doi.org/10.3390/medicina58060761 |
[61] | Edwards, S., Lalor, P.F., Nash, G.B., et al. (2005) Lymphocyte Traffic through Sinusoidal Endothelial Cells Is Regulated by Hepatocytes. Hepatology, 41, 451-459. https://doi.org/10.1002/hep.20585 |
[62] | Wilkinson, A.L., Qurashi, M. and Shetty, S. (2020) The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer within the Liver. Frontiers in Physiology, 11, Article 990. https://doi.org/10.3389/fphys.2020.00990 |
[63] | Martin-Armas, M., Simon-Santamaria, J., Pettersen, I., et al. (2006) Toll-Like Receptor 9 (TLR9) Is Present in Murine Liver Sinusoidal Endothelial Cells (LSECs) and Mediates the Effect of CpG-Oligonucleotides. Journal of Hepatology, 44, 939-946. https://doi.org/10.1016/j.jhep.2005.09.020 |
[64] | Sutter, A.G., Palanisamy, A.P., Lench, J.H., et al. (2016) Dietary Saturated Fat Promotes Development of Hepatic Inflammation through Toll-Like Receptor 4 in Mice. Journal of Cellular Biochemistry, 117, 1613-1621. https://doi.org/10.1002/jcb.25453 |
[65] | Zhou, L.Y., Zeng, H., Wang, S., et al. (2018) Regulatory Role of Endothelial PHD2 in the Hepatic Steatosis. Cellular Physiology and Biochemistry, 48, 1003-1011. https://doi.org/10.1159/000491968 |
[66] | Jarnagin, W.R., Rockey, D.C., Koteliansky, V.E., et al. (1994) Expression of Variant Fibronectins in Wound Healing: Cellular Source and Biological Activity of the EIIIA Segment in Rat Hepatic Fibrogenesis. Journal of Cell Biology, 127, 2037-2048. https://doi.org/10.1083/jcb.127.6.2037 |
[67] | Kisseleva, T. and Brenner, D. (2021) Molecular and Cellular Mechanisms of Liver Fibrosis and Its Regression. Nature Reviews Gastroenterology & Hepatology, 18, 151-166. https://doi.org/10.1038/s41575-020-00372-7 |
[68] | Wan, Y., Li, X., Slevin, E., et al. (2022) Endothelial Dysfunction in Pathological Processes of Chronic Liver Disease during Aging. The FASEB Journal, 36, e22125. https://doi.org/10.1096/fj.202101426R |
[69] | Ding, B.S., Nolan, D.J., Butler, J.M., et al. (2010) Inductive Angiocrine Signals from Sinusoidal Endothelium Are Required for Liver Regeneration. Nature, 468, 310-315. https://doi.org/10.1038/nature09493 |
[70] | Hu, J., Srivastava, K., Wieland, M., et al. (2014) Endothelial Cell-Derived Angiopoietin-2 Controls Liver Regeneration as a Spatiotemporal Rheostat. Science, 343, 416-419. https://doi.org/10.1126/science.1244880 |
[71] | Ding, B.S., Cao, Z., Lis, R., et al. (2014) Divergent Angiocrine Signals from Vascular Niche Balance Liver Regeneration and Fibrosis. Nature, 505, 97-102. https://doi.org/10.1038/nature12681 |
[72] | Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224. https://doi.org/10.1016/S0140-6736(20)32511-3 |
[73] | Yu, Z., Guo, J., Liu, Y., et al. (2022) Nano Delivery of Simvastatin Targets Liver Sinusoidal Endothelial Cells to Remodel Tumor Microenvironment for Hepatocellular Carcinoma. Journal of Nanobiotechnology, 20, Article No. 9. https://doi.org/10.1186/s12951-021-01205-8 |
[74] | Bravo, M., Raurell, I., Hide, D., et al. (2019) Restoration of Liver Sinusoidal Cell Phenotypes by Statins Improves Portal Hypertension and Histology in Rats with NASH. Scientific Reports, 9, Article No. 20183. https://doi.org/10.1038/s41598-019-56366-2 |
[75] | da Silva Pereira, E.N.G., Araujo, B.P., Rodrigues, K.L., et al. (2022) Simvastatin Improves Microcirculatory Function in Nonalcoholic Fatty Liver Disease and Downregulates Oxidative and ALE-RAGE Stress. Nutrients, 14, Article 716. https://doi.org/10.3390/nu14030716 |
[76] | Furuta, K., Guo, Q., Pavelko, K.D., et al. (2021) Lipid-Induced Endothelial Vascular Cell Adhesion Molecule 1 Promotes Nonalcoholic Steatohepatitis Pathogenesis. The Journal of Clinical Investigation, 131, e143690. https://doi.org/10.1172/JCI143690 |
[77] | Todisco, S., Santarsiero, A., Convertini, P., et al. (2022) PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). Biology, 11, Article 792. https://doi.org/10.3390/biology11050792 |
[78] | Lefere, S., Van de Velde, F., Hoorens, A., et al. (2019) Angiopoietin-2 Promotes Pathological Angiogenesis and Is a Therapeutic Target in Murine Nonalcoholic Fatty Liver Disease. Hepatology, 69, 1087-1104. https://doi.org/10.1002/hep.30294 |
[79] | Ibrahim, S.H. (2021) Sinusoidal Endotheliopathy in Nonalcoholic Steatohepatitis: Therapeutic Implications. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321, G67-G74. https://doi.org/10.1152/ajpgi.00009.2021 |
[80] | Moosavian, S.A., Sathyapalan, T., Jamialahmadi, T., et al. (2021) The Emerging Role of Nanomedicine in the Management of Nonalcoholic Fatty Liver Disease: A State-of-the-Art Review. Bioinorganic Chemistry and Applications, 2021, Article ID: 4041415. https://doi.org/10.1155/2021/4041415 |
[81] | Salunkhe, S.A., Chitkara, D., Mahato, R.I., et al. (2021) Lipid Based Nanocarriers for Effective Drug Delivery and Treatment of Diabetes Associated Liver Fibrosis. Advanced Drug Delivery Reviews, 173, 394-415. https://doi.org/10.1016/j.addr.2021.04.003 |
[82] | Bhandari, S., Larsen, A.K., McCourt, P., et al. (2021) The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease. Frontiers in Physiology, 12, Article 757469. https://doi.org/10.3389/fphys.2021.757469 |
[83] | Zhang, L.-F., Wang, X.-H., Zhang, C.-L., et al. (2022) Sequential Nano-Penetrators of Capillarized Liver Sinusoids and Extracellular Matrix Barriers for Liver Fibrosis Therapy. ACS Nano, 16, 14029-14042. https://doi.org/10.1021/acsnano.2c03858 |