|
多级蒙特卡洛有限元方法求解对数势Cahn-Hilliard-Cook方程误差分析
|
Abstract:
本文用多级蒙特卡洛有限元方法求解具有对数势的随机Cahn-Hilliard-Cook方程。为了估计方程的温和解,运用Ciarlet-Raviart有限元方法进行空间离散化,对时间则采用向后欧拉格式离散,得到方程的全离散数值格式。同时运用多级蒙特卡洛方法进行数值模拟,相较于标准蒙特卡洛方法,提高了计算效率。文中主要给出了全离散格式的误差估计以及分别应用标准蒙特卡洛方法和多级蒙特卡洛方法进行数值模拟时的总误差估计。
In this paper, a multilevel Monte Carlo finite element method is used to solve the stochastic Cahn-Hilliard-Cook equation with logarithmic potential. To estimate the mild solution of the equation, the Ciarlet-Raviart finite element method is applied for spatial discretization and the backward Euler scheme is applied for time discretization to obtain the full discrete numerical scheme of the equation. Numerical simulations were conducted using the multilevel Monte Carlo method, which enhances computational efficiency compared to the standard Monte Carlo method. The error estimates for the fully discrete scheme and the total error estimates are provided for the numerical simulations using the standard Monte Carlo method and the multilevel Monte Carlo method, respectively.
[1] | Cook, H. (1970) Brownian Motion in Spinodal Decomposition. Acta Metallurgica, 18, 297-306. https://doi.org/10.1016/0001-6160(70)90144-6 |
[2] | Da Prato, G. and Debussche, A. (1996) Stochastic Cahn-Hilliard Equation. Nonlinear Analysis, 26, 241-263. https://doi.org/10.1016/0362-546X(94)00277-O |
[3] | Larsson, S. and Mesforush, A. (2011) Finite-Element Approximation of the Linearized Cahn-Hilliard-Cook Equation. IMA Journal of Numerical Analysis, 31, 1315-1333. https://doi.org/10.1093/imanum/drq042 |
[4] | Furihata, D., Kova?cs, M., Larsson, S. and Lindgren, F. (2018) Strong Convergence of a Fully Discrete Finite Element Approximation of the Stochastic Cahn-Hilliard Equation. SIAM Journal on Numerical Analysis, 56, 708-731. https://doi.org/10.1137/17M1121627 |
[5] | Qi, R.S. and Wang, X.J. (2020) Error Estimates of Semi-Discrete and Fully Discrete Finite Element Methods for the Cahn-Hilliard-Cook Equation F. SIAM Journal on Numerical Analysis, 58, 1393-2018. https://doi.org/10.1137/19M1259183 |
[6] | Cardon-Weber, C. (2002) Implicit Approximation Scheme for the Cahn-Hilliard Stochastic Equation. Laboratoire des Probabilites et Modeleles Aleatoires, Universite Paris V. |
[7] | Cui, J.B., Hong, J.L. and Sun, L.Y. (2018) Strong Convergence Rate of a Full Discretization for Stochastic Cahn-Hilliard Equation Driven by Space-Time White Noise. arXiv: 1812.06289. |
[8] | Hutzenthaler, M. and Jentzen, A. (2020) On a Perturbation Theory and on Strong Convergence Rates for Stochastic Ordinary and Partial Differential Equations with Non-Globally Monotone Coefficients. The Annals of Probability, 48, 53-93. arXiv: 1401.0295. https://doi.org/10.1214/19-AOP1345 |
[9] | Li, X., Qiao, Z.H. and Zhang, H. (2016) An Unconditionally Energy Stable Finite Difference Scheme for a Stochastic Cahn-Hilliard Equation. Science China Mathematics, 59, 1815-1834. https://doi.org/10.1007/s11425-016-5137-2 |
[10] | Giles, M.B. (2008) Multilevel Monte Carlo Path Simulation. Operations Research, 56, 607-617. https://doi.org/10.1287/opre.1070.0496 |
[11] | Barth, A., Lang, A. and Schwab, C. (2013) Multilevel Monte Carlo Method for Parabolic Stochastic Partial Differential Equations. BIT Numerical Mathematics, 53, 3-27. https://doi.org/10.1007/s10543-012-0401-5 |
[12] | Barrett, J.W. and Blowey, J.F. (1999) Finite Element Approximation of the Cahn-Hilliard Equation with Concentration Dependent Mobility. Mathematics of Computation, 68, 487-517. https://doi.org/10.1090/S0025-5718-99-01015-7 |
[13] | Da Prato, G. and Zabczyk, J. (1992) Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511666223 |
[14] | Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations. In: Marsden, J.E., Sirovich, L. and John, F., Eds., Applied Mathematical Sciences (Volume 44), Springer, New York. https://doi.org/10.1007/978-1-4612-5561-1 |
[15] | Clark, D.S. (1987) Short Proof of a Discrete Gronwall Inequality. Discrete Applied Mathematics, 16, 279-281. https://doi.org/10.1016/0166-218X(87)90064-3 |