|
Pharmacy Information 2024
硒蛋白SelK介导的棕榈酰化对与小胶质细胞吞噬能力相关蛋白表达的影响研究
|
Abstract:
目的:一些研究中发现,硒蛋白SelK主要在小胶质细胞等免疫细胞中大量表达,并能通过与棕榈酰基转移酶ZDHHC6的结合,介导CD36、IP3R、Calnexin、ASAP2等多个蛋白的棕榈酰化,而上述蛋白质均与免疫细胞的吞噬功能相关。为此研究硒蛋白SelK的棕榈酰化是否能够促进上述蛋白的表达对于阐明硒蛋白SelK提高免疫细胞吞噬功能的机制具有特殊意义。方法:对小胶质细胞BV2用硒蛋白SelK过表达/敲减病毒载体进行SelK的过表达/敲减,收集样品后使用实时定量PCR方法测定CD36和Calnaxin mRNA的转录情况,Western blot方法测定目标蛋白的表达变化。结果:硒蛋白SelK的过表达在提高ZDHHC6的表达同时,显著促进CD36(吞噬细胞模式识别受体之一)与Calnexin(参与内质网中Ca2 向线粒体运输的蛋白质之一)的表达和mRNA转录。并且如预期一样SelK的敲减显著降低上述两种蛋白的蛋白质表达和mRNA转录。结论:硒蛋白SelK通过促进CD36和Calnexin蛋白的棕榈酰化,提高吞噬相关蛋白的稳定表达,从而提高免疫细胞的吞噬功能。
Objective: Recent studies have found that selenoprotein K (SelK) is mainly expressed in microglia and other immune cells, and can mediate the palmitoylation of CD36, IP3R, Calnexin, ASAP2 and other proteins, which are related to the phagocytosis of immune cells, by binding to palmitoacyltransferase ZDHHC6. Therefore, it is of special significance to study whether the palmitoylation of SelK can promote the expression of the above proteins for elucidating the mechanism of SELK’s enhancement of the phagocytosis of immune cells. Methods: SelK overexpression/knockdown of microglia BV2 was performed with SelK overexpression/knockdown virus vectors. After collecting samples, real-time quantitative PCR was used to determine the transcription of CD36 and Calnexin mRNA, and Western blot was used to determine the expression of the target proteins. Results: Overexpression of SelK increased the expression of ZDHHC6, and significantly promoted the protein expression and mRNA transcription of Calnexin, one of the phagocyte pattern recognition receptors, and CD36, one of the proteins involved in promoting Ca2 transporting from endoplasmic reticulum to mitochondria, in microglia. As expected, SelK knockdown significantly reduced the protein expression and mRNA transcription of the two proteins. Conclusion: SelK can promote the palmitoylation of CD36 and Calnexin proteins, improve the stable expression of phagocytic related proteins, and thus enhance the phagocytic function of immune cells.
[1] | Lloyd, A.F. and Miron, V.E. (2019) The Pro-Remyelination Properties of Microglia in the Central Nervous System. Nature Reviews Neurology, 15, 447-458. https://doi.org/10.1038/s41582-019-0184-2 |
[2] | Villacampa, N. and Heneka, M.T. (2018) Microglia: You’ll Never Walk Alone! Immunity, 48, 195-197. https://doi.org/10.1016/j.immuni.2018.02.009 |
[3] | 邓小华, 罗学港. 小胶质细胞及其在阿尔茨海默病中的作用[J]. 国际病理科学与临床杂志, 2007, 27(4): 332-335. |
[4] | Pan, X.-D., Zhu, Y.-G., Lin, N., et al. (2011) Microglial Phagocytosis Induced by Fibrillar β-Amyloid Is Attenuated by Oligomeric β-Amyloid: Implications for Alzheimer’s Disease. Molecular Neurodegeneration, 6, Article No. 45. https://doi.org/10.1186/1750-1326-6-45 |
[5] | 刘玥滢, 杜天舒, 刘玚, 等. 小胶质细胞介导的吞噬作用在神经退行性疾病中的研究进展[J]. 生理学报, 2022, 74(2): 283-293. |
[6] | 韩旭, 梁宇, 周刚. 海马与阿尔茨海默病[J]. 中国医疗前沿(下半月), 2011, 6(3): 21-22. |
[7] | Orr, C.F., Rowe, D.B. and Halliday, G.M. (2002) An Inflammatory Review of Parkinson’s Disease. Progress in Neurobiology, 68, 325-340. https://doi.org/10.1016/S0301-0082(02)00127-2 |
[8] | Nazem, A., Sankowski, R., Bacher, M., et al. (2015) Rodent Models of Neuroinflammation for Alzheimer’s Disease. Journal of Neuroinflammation, 12, Article No. 74. https://doi.org/10.1186/s12974-015-0291-y |
[9] | Krstic, D. and Knuesel, I. (2013) Deciphering the Mechanism Underlying Late-Onset Alzheimer Disease. Nature Reviews Neurology, 9, 25-34. https://doi.org/10.1038/nrneurol.2012.236 |
[10] | 仁富亮, 宋少伟, 李恩东. 神经细胞和小胶质细胞的相互作用与神经变性性疾病的关系[J]. 中国卫生产业, 2013(25): 156-157, 159. |
[11] | Luchena, C., Zuazo-Ibarra, J., Valero, J., et al. (2022) A Neuron, Microglia, and Astrocyte Triple Co-Culture Model to Study Alzheimer’s Disease. Frontiers in Aging Neuroscience, 14, Article 844534. https://doi.org/10.3389/fnagi.2022.844534 |
[12] | Pitts, M.W. and Hoffmann, P.R. (2018) Endoplasmic Reticulum-Resident Selenoproteins as Regulators of Calcium Signaling and Homeostasis. Cell Calcium, 70, 76-86. https://doi.org/10.1016/j.ceca.2017.05.001 |
[13] | Chen, C.-L., Wang, H.-L., Qian, F., et al. (2022) Prominent Effects of Berbamine Hydrochloride on Alzheimer’s Disease Model Mice. Frontiers in Pharmacology, 13, Article 939039. https://doi.org/10.3389/fphar.2022.939039 |
[14] | Meng, X.-L., Chen, C.-L., Liu, Y.-Y., et al. (2019) Selenoprotein SELENOK Enhances the Migration and Phagocytosis of Microglial Cells by Increasing the Cytosolic Free Ca2 Level Resulted from the Up-Regulation of IP3R. Neuroscience, 406, 38-49. https://doi.org/10.1016/j.neuroscience.2019.02.029 |
[15] | Verma, S., Hoffmann, F.W., Kumar, M., et al. (2011) Selenoprotein K Knockout Mice Exhibit Deficient Calcium Flux in Immune Cells and Impaired Immune Responses. Journal of Immunology, 186, 2127-2137. https://doi.org/10.4049/jimmunol.1002878 |
[16] | Dobri, A.-M., Dud?u, M., Enciu, A.-M., et al. (2021) CD36 in Alzheimer’s Disease: An Overview of Molecular Mechanisms and Therapeutic Targeting. Neuroscience, 453, 301-311. https://doi.org/10.1016/j.neuroscience.2020.11.003 |
[17] | Grajchen, E., Wouters, E., van de Haterd, B., et al. (2020) CD36-Mediated Uptake of Myelin Debris by Macrophages and Microglia Reduces Neuroinflammation. Journal of Neuroinflammation, 17, Article No. 224. https://doi.org/10.1186/s12974-020-01899-x |
[18] | Hao, J.-W., Wang, J., Guo, H., et al. (2020) CD36 Facilitates Fatty Acid Uptake by Dynamic Palmitoylation-Regulated Endocytosis. Nature Communications, 11, Article No. 4765. https://doi.org/10.1038/s41467-020-18565-8 |
[19] | Ahumada-Castro, U., Bustos, G., Silva-Pavez, E., et al. (2021) In the Right Place at the Right Time: Regulation of Cell Metabolism by IP3R-Mediated Inter-Organelle Ca2 Fluxes. Frontiers in Cell and Developmental Biology, 9, Article 629522. https://doi.org/10.3389/fcell.2021.629522 |
[20] | Fredericks, G.J., Hoffmann, F.W., Rose, A.H., et al. (2014) Stable Expression and Function of the Inositol 1,4,5-Triphosphate Receptor Requires Palmitoylation by a DHHC6/Selenoprotein K Complex. Proceedings of the National Academy of Sciences of the United States of America, 111, 16478-16483. https://doi.org/10.1073/pnas.1417176111 |
[21] | Appenzeller-Herzog, C. and Simmen, T. (2016) ER-Luminal Thiol/Selenol-Mediated Regulation of Ca2 Signalling. Biochemical Society Transactions, 44, 452-459. https://doi.org/10.1042/BST20150233 |
[22] | Fredericks, G.J. and Hoffmann, P.R. (2015) Selenoprotein K and Protein Palmitoylation. Antioxidants & Redox Signaling, 23, 854-862. https://doi.org/10.1089/ars.2015.6375 |
[23] | Dallavilla, T., Abrami, L., Sandoz, P.A., et al. (2016) Model-Driven Understanding of Palmitoylation Dynamics: Regulated Acylation of the Endoplasmic Reticulum Chaperone Calnexin. PLOS Computational Biology, 12, e1004774. https://doi.org/10.1371/journal.pcbi.1004774 |
[24] | Lynes, E.M., Raturi, A., Shenkman, M., et al. (2013) Palmitoylation Is the Switch That Assigns Calnexin to Quality Control or ER Ca2 Signaling. Journal of Cell Science, 126, 3893-3903. https://doi.org/10.1242/jcs.125856 |
[25] | Norton, R.L., Fredericks, G.J., Huang, Z., et al. (2017) Selenoprotein K Regulation of Palmitoylation and Calpain Cleavage of ASAP2 Is Required for Efficient FcγR-Mediated Phagocytosis. Journal of Leukocyte Biology, 101, 439-448. https://doi.org/10.1189/jlb.2A0316-156RR |
[26] | Wang, J., Hao, J.-W., Wang, X., et al. (2019) DHHC4 and DHHC5 Facilitate Fatty Acid Uptake by Palmitoylating and Targeting CD36 to the Plasma Membrane. Cell Reports, 26, 209-221. E5. https://doi.org/10.1016/j.celrep.2018.12.022 |
[27] | Ben, S.B., Wang, Q.Y., Xia, L., et al. (2011) Selenoprotein dSelK in Drosophila Elevates Release of Ca2 from Endoplasmic Reticulum by Upregulating Expression of Inositol 1,4,5-Tris-Phosphate Receptor. Biochemistry, 76, 1030-1036. https://doi.org/10.1134/S0006297911090070 |
[28] | Shchedrina, V.A., Zhang, Y., Labunskyy, V.M., et al. (2010) Structure-Function Relations, Physiological Roles, and Evolution of Mammalian ER-Resident Selenoproteins. Antioxidants & Redox Signaling, 12, 839-849. https://doi.org/10.1089/ars.2009.2865 |
[29] | Lu, C., Qiu, F., Zhou, H., et al. (2006) Identification and Characterization of Selenoprotein K: An Antioxidant in Cardiomyocytes. FEBS Letters, 580, 5189-5197. https://doi.org/10.1016/j.febslet.2006.08.065 |
[30] | Rosales, C. and Uribe-Querol, E. (2017) Phagocytosis: A Fundamental Process in Immunity. BioMed Research International, 2017, Article ID: 9042851. https://doi.org/10.1155/2017/9042851 |