|
基于加权案例推理的脑卒中后偏瘫患者的智能康复训练处方决策研究
|
Abstract:
及时、精准的康复训练干预可以有效促进脑卒中后的偏瘫(Post-Stroke Hemiplegia, PSH)功能恢复,提升生活独立性。现有康复服务模式具有流程繁琐、专家主导、服务资源分配不均等多重问题。为了提高康复训练决策效率,并提供全面可解释性,本文针对PSH患者的肢体功能障碍,提出了一种基于加权案例推理(Weighted Case-Based Reasoning, WCBR)的康复训练处方决策算法。基于139例临床的脑卒中患者病例构建案例库,WCBR以K近邻(K-Nearest Neighbor, KNN)为基准策略根据患者量表信息提供初始康复训练方案,供康复治疗师参考修正并给出最终康复治疗处方。通过实验验证,该算法的精度指标为87.5%,召回率指标为90.1%。本研究证明,该算法可以基于PSH患者肢体功能评估实现精准的康复训练决策,有望为康复训练提供临床决策支持,改善康复服务流程。
Timely and accurate rehabilitation training intervention can effectively promote functional recovery from post-stroke hemiplegia (PSH) and improve independence in daily living. The existing rehabilitation service models have multiple issues, such as cumbersome processes, expert dominance, and uneven distribution of service resources. To improve the efficiency of rehabilitation training decision-making and provide comprehensive explaining ability, this paper proposes a rehabilitation training prescription decision algorithm based on Weighted Case-Based Reasoning (WCBR) targeted at the limb functional impairment of PSH patients. A case library was constructed based on 139 clinical stroke patient cases, and WCBR uses the K-Nearest Neighbor (KNN) as a benchmark strategy to provide an initial rehabilitation training plan based on the patient’s scale information, for rehabilitation therapists to reference, amend, and issue the final rehabilitation treatment prescription. Experimental validation showed that the algorithm has an accuracy metric of 87.5% and a recall metric of 90.1%. This study proves that the algorithm can achieve accurate rehabilitation training decisions based on the limb function assessment of PSH patients, is expected to provide clinical decision support for rehabilitation training, and improve the rehabilitation service process.
[1] | Lo, E.H., Dalkara, T. and Moskowitz, M.A. (2003) Mechanisms, Challenges and Opportunities in Stroke. Nature Reviews Neuroscience, 4, 399-414. https://doi.org/10.1038/nrn1106 |
[2] | Feigin, V.L., Brainin, M., Norrving, B., Martins, S., Sacco, R.L., Hacke, W. and Lindsay, P. (2022) World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. International Journal of Stroke, 17, 18-29. https://doi.org/10.1177/17474930211065917 |
[3] | 王拥军. 血管紧张素受体拮抗剂在改善脑卒中患者预后中的作用[J]. 中华高血压杂志, 2012, 20(5): 411-413. |
[4] | Yang, Y., Shi, Y.Z., Zhang, N., Wang, S., Ungvari, G.S., Ng, C.H. and Xiang, Y.T. (2016) The Disability Rate of 5-Year Post-Stroke and Its Correlation Factors: A National Survey in China. PLOS ONE, 11, E0165341. https://doi.org/10.1371/journal.pone.0165341 |
[5] | Robinson, R.G. and Jorge, R.E. (2016) Post-Stroke Depression: A Review. American Journal of Psychiatry, 173, 221-231. https://doi.org/10.1176/appi.ajp.2015.15030363 |
[6] | Rajsic, S., Gothe, H., Borba, H.H., Sroczynski, G., Vujicic, J., Toell, T. and Siebert, U. (2019) Economic Burden of Stroke: A Systematic Review on Post-Stroke Care. The European Journal of Health Economics, 20, 107-134. https://doi.org/10.1007/s10198-018-0984-0 |
[7] | 司惠芳, 梁岚萍, 刘向真, 等. 脑卒中肢体功能康复现状综述[J]. 中华护理杂志, 2004, 39(7): 535-538. |
[8] | 郎倩倩, 郑俭. 国外常用辅助技术服务模式的比较[J]. 中国康复理论与实践, 2018, 24(2): 224-228. |
[9] | 李晞, 吴小高. 我国残疾人辅助器具服务工作的现状及展望[J]. 残疾人研究, 2016(3): 43-47. |
[10] | Ignizio, J.P. (1990) A Brief Introduction to Expert Systems. Computers & Operations Research, 17, 523-533. https://doi.org/10.1016/0305-0548(90)90058-F |
[11] | Zikos, D. and DeLellis, N. (2018) CDSS-RM: A Clinical Decision Support System Reference Model. BMC Medical Research Methodology, 18, Article No. 137. https://doi.org/10.1186/s12874-018-0587-6 |
[12] | Hamedan, F., Orooji, A., Sanadgol, H. and Sheikhtaheri, A. (2020) Clinical Decision Support System to Predict Chronic Kidney Disease: A Fuzzy Expert System Approach. International Journal of Medical Informatics, 138, 104-134. https://doi.org/10.1016/j.ijmedinf.2020.104134 |
[13] | Canoa, J., Pena Gil, C. and Monserrat, L. (2022) Development of Knowledge-Based Clinical Decision Support System for the Management of Cardiovascular Diseases. European Heart Journal-Digital Health, 3, Ztac076-2798. https://doi.org/10.1093/ehjdh/ztac076.2798 |
[14] | Bennett, C.C. and Hauser, K. (2013) Artificial Intelligence Framework for Simulating Clinical Decision-Making: A Markov Decision Process Approach. Artificial Intelligence in Medicine, 57, 9-19. https://doi.org/10.1016/j.artmed.2012.12.003 |
[15] | Abdel Majeed, Y., Awadalla, S.S. and Patton, J.L. (2018) Regression Techniques Employing Feature Selection to Predict Clinical Outcomes in Stroke. PLOS ONE, 13, E0205639. https://doi.org/10.1371/journal.pone.0205639 |
[16] | Kim, J.K., Choo, Y.J. and Chang, M.C. (2021) Prediction of Motor Function in Stroke Patients Using Machine Learning Algorithm: Development of Practical Models. Journal of Stroke and Cerebrovascular Diseases, 30, Article ID: 105856. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105856 |
[17] | Xu, C., Liu, W., Chen, Y. and Ding, X. (2022) A Supervised Case-Based Reasoning Approach for Explainable Thyroid Nodule Diagnosis. Knowledge-Based Systems, 251, Article ID: 109200. https://doi.org/10.1016/j.knosys.2022.109200 |
[18] | 董理权, 李晞, 徐进, 等. “互联网 ”智能化辅助器具评估与适配服务体系构建研究[J]. 中国康复理论与实践, 2019, 25(6): 724-728. |
[19] | Aamodt, A. and Plaza, E. (1994) Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications, 7, 39-59. https://doi.org/10.3233/AIC-1994-7104 |
[20] | Park, H.J., Oh, J.S., Jeong, D.U. and Park, K.S. (2000) Automated Sleep Stage Scoring Using Hybrid Rule-and Case-Based Reasoning. Computers and Biomedical Research, 33, 330-349. https://doi.org/10.1006/cbmr.2000.1549 |
[21] | Bergmann, R., Kolodner, J. and Plaza, E. (2005) Representation in Case-Based Reasoning. The Knowledge Engineering Review, 20, 209-213. https://doi.org/10.1017/S0269888906000555 |
[22] | 王福忠, 李媛媛. 基于案例推理的电机故障诊断方法研究[J]. 制造业自动化,2018, 40(12): 11-14. |
[23] | Wettschereck, D., Aha, D.W. and Mohri, T. (1997) A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms. Artificial Intelligence Review, 11, 273-314. https://doi.org/10.1023/A:1006593614256 |
[24] | Read, J. (2008) A Pruned Problem Transformation Method for Multi-Label Classification. Proceedings of the 2008 New Zealand Computer Science Research Student Conference, Christchurch, 14-18 April 2008, 143-150. |
[25] | 黄运稳, 陈光, 叶建芳. 基于余弦相似度的加权K近邻室内定位算法[J]. 计算机应用与软件, 2019, 36(2): 159-162. |
[26] | Ma, Y., Lei, Y. and Wang, T. (2020) A Natural Scene Recognition Learning Based on Label Correlation. IEEE Transactions on Emerging Topics in Computational Intelligence, 6, 150-158. https://doi.org/10.1109/TETCI.2020.3034900 |
[27] | Zhang, M.L. and Zhou, Z.H. (2013) A Review on Multi-Label Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering, 26, 1819-1837. https://doi.org/10.1109/TKDE.2013.39 |