全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2024 

双融合模型在香港股市的波动率量化交易策略研究
Research on Double Fusion Modeling for Volatility Quantitative Trading Strategies in Hong Kong Stock Market

DOI: 10.12677/fin.2024.143090, PP. 844-855

Keywords: 时间序列模型,机器学习模型,波动率预测,量化交易
Time Series Models
, Machine Learning Models, Volatility Prediction, Quantitative Trading

Full-Text   Cite this paper   Add to My Lib

Abstract:

在金融市场中,波动率反映了资产价格的不稳定性和风险程度。波动率量化交易策略是一种利用波动率来指引投资者进行交易的方法,并能够带来一定的收益。本文的目的是探讨时间序列模型和机器学习模型相结合的双融合模型在波动率量化交易策略中的应用,以提升策略的效果和稳健性。我们采用了3种时间序列模型Generalized Autoregressive Conditional Heteroskedasticity (GARCH)、Glosten Jagannathan Runkle GARCH (GJR-GARCH)和Exponential GARCH (EGARCH),以及4种传统机器学习模型Random Forest (RF)、Adaboost (ADA)、Gradient Boosting Decision Tree (GBDT)和Histogram Based Gradient Boosting (Hist-GB),组合成了12种双融合模型对波动率进行预测。同时,我们进行了模拟交易的回测实验,以评估该波动率量化交易策略的性能。该策略在香港市场中的股票都获得了较好的收益,为投资者提供了有价值的参考。
In the financial markets, volatility is indicative of the fluctuation in asset prices and the associated level of risk. The volatility quantitative trading strategy is an approach that leverages volatility to make trading decisions and generate specific returns. This paper aims to explore the application of double fusion modeling that combines time series models and machine learning models within the volatility quantitative trading strategy to augment its efficiency and stability. We employ 3 time series models: Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Glosten Jagannathan Runkle GARCH (GJR-GARCH), and Exponential GARCH (EGARCH); alongside 4 traditional machine learning models: Random Forest (RF), Adaboost (ADA), Gradient Boosting Decision Tree (GBDT), and HistogramBased Gradient Boosting (Hist-GB). These models are amalgamated into 12 double fusion models for prediction analysis. Meanwhile, we execute backtesting trading experiments to assess the strategy’s performance. The strategy has demonstrated superior returns in Hong Kong market, and offers a valuable trading reference for investors.

References

[1]  颜轲越, 王祎萌, 李莹. 基于机器学习的共享单车需求预测[J]. 计算机科学与应用, 2022, 12(3): 697-706.
https://doi.org/10.12677/CSA.2022.123071
[2]  李莹, 颜轲越. 基于改进LRFMC模型的航空公司客户分类[J]. 计算机科学与应用, 2022, 12(5): 1341-1349.
https://doi.org/10.12677/CSA.2022.125133
[3]  Wang, Y. and Yan, K. (2022) Prediction of Significant Bitcoin Price Changes Based on Deep Learning. 5th International Conference on Data Science and Information Technology, Shanghai, 22-24 July 2022, 1-5.
https://doi.org/10.1109/DSIT55514.2022.9943971
[4]  Wang, Y. and Yan, K. (2023) Machine Learning-Based Quantitative Trading Strategies across Different Time Intervals in the American Market. Quantitative Finance and Economics, 7, 569-594.
https://doi.org/10.3934/QFE.2023028
[5]  Yan, K., Wang, Y. and Li, Y. (2023) Enhanced Bollinger Band Stock Quantitative Trading Strategy Based on Random Forest. Artificial Intelligence Evolution, 4, 22-33.
https://doi.org/10.37256/aie.4120231991
[6]  Li, Y. and Yan, K. (2023) Prediction of Barrier Option Price Based on Antithetic Monte Carlo and Machine Learning Methods. Cloud Computing and Data Science, 4, 77-86.
https://doi.org/10.37256/ccds.4120232110
[7]  Kumbure, M.M., Lohrmann, C., Luukka, P. and Porras, J. (2022) Machine Learning Techniques and Data for Stock Market Forecasting: A Literature Review. Expert Systems with Applications, 197, Article ID: 116659.
https://doi.org/10.1016/j.eswa.2022.116659
[8]  颜轲越, 李莹, 王祎萌. 基于信号分解和机器学习模型的股票价格预测[J]. 计算机科学与应用, 2022, 12(4): 1080-1088.
https://doi.org/10.12677/CSA.2022.124111
[9]  Wang, Y. and Yan, K. (2023) Application of Traditional Machine Learning Models for Quantitative Trading of Bitcoin. Artificial Intelligence Evolution, 4, 34-48.
https://doi.org/10.37256/aie.4120232226
[10]  Basak, S., Kar, S., Saha, S., Khaidem, L. and Dey, S.R. (2019) Predicting the Direction of Stock Market Prices Using Tree-Based Classifiers. The North American Journal of Economics and Finance, 47, 552-567.
https://doi.org/10.1016/j.najef.2018.06.013
[11]  Yan, K. and Wang, Y. (2023) Prediction of Bitcoin Prices’ Trends with Ensemble Learning Models. 5th International Conference on Computer Information Science and Artificial Intelligence, Chongqing, 16-18 September 2022, 900-905.
https://doi.org/10.1117/12.2667793
[12]  Alsulmi, M. and Al-Shahrani, N. (2022) Machine Learning-Based Decision-Making for Stock Trading: Case Study for Automated Trading in Saudi Stock Exchange. Scientific Programming, 2022, Article ID: 6542862.
https://doi.org/10.1155/2022/6542862
[13]  Vijh, M., Chandola, D., Tikkiwal, V.A. and Kumar, A. (2020) Stock Closing Price Prediction Using Machine Learning Techniques. Procedia Computer Science, 167, 599-606.
https://doi.org/10.1016/j.procs.2020.03.326
[14]  Khan, W., Ghazanfar, M.A., Azam, M.A., Karami, A., Alyoubi, K.H. and Alfakeeh, A.S. (2022) Stock Market Prediction Using Machine Learning Classifiers and Social Media, News. Journal of Ambient Intelligence and Humanized Computing, 13, 3433-3456.
[15]  Sun, H. and Yu, B. (2020) Forecasting Financial Returns Volatility: A GARCH-SVR Model. Computational Economics, 55, 451-471.
https://doi.org/10.1007/s10614-019-09896-w
[16]  (2024) Yahoo Finance.
https://finance.yahoo.com/
[17]  Monfared, S.A. and Enke, D. (2014) Volatility Forecasting Using a Hybrid GJR-GARCH Neural Network Model. Procedia Computer Science, 36, 246-253.
https://doi.org/10.1016/j.procs.2014.09.087
[18]  Epaphra, M. (2016) Modeling Exchange Rate Volatility: Application of the GARCH and EGARCH Models. Journal of Mathematical Finance, 7, 121-143.
https://doi.org/10.4236/jmf.2017.71007
[19]  Karasan, A. (2021) Machine Learning for Financial Risk Management with Python. O’Reilly Media, Inc., Sebastopol.
[20]  Lo, H.C. and Chan, C.Y. (2023) Mean Reverting in Stock Ratings Distribution. Review of Quantitative Finance and Accounting, 60, 1065-1097.
https://doi.org/10.1007/s11156-022-01121-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133