全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

柔性无损检测超声线阵换能器的仿真研究
Simulation Study on Flexible Non-Destructive Testing of Ultrasonic Linear Array Transducers

DOI: 10.12677/mos.2024.133204, PP. 2223-2232

Keywords: 线阵换能器,柔性超声,超声成像,有限元仿真
Linear Array Transducer
, Flexible Ultrasound Transducer, Ultrasound Imaging, Finite Element Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了突破传统刚性超声探头无法完全贴合零部件曲面的限制,论文设计了一种由压电材料PZT-5H和聚二甲基硅氧烷(PDMS)组成的柔性超声线阵换能器。针对设计的柔性换能器采用有限元分析方法对其电阻抗性能、脉冲回波特性进行了仿真分析,获得了换能器的中心频率,?6 dB带宽以及发射电压响应。此外分别仿真了此柔性换能器应用于凹面和凸面金属管时对其内部裂纹的检测情况。仿真结果显示换能器的中心频率为21.5 MHz,?6 dB带宽为51.2%。换能器为凹形和凸形时其声压级均满足检测需求,可以用于对钢管中裂隙进行检测。
In order to overcome the limitation that traditional rigid probes cannot fully adhere to curved surfaces, a flexible ultrasonic linear array transducer composed of piezoelectric material PZT-5H and polydimethylsiloxane (PDMS) was designed. Simulate and analyze the impedance performance and pulse echo characteristics of the designed flexible transducer using the finite element software COMSOL, and obtain the center frequency, ?6 dB bandwidth, emission voltage response. Then, the detection of cracks in metal pipes using this flexible transducer on concave and convex surfaces was simulated separately. The simulation results show that the center frequency of the transducer is 21.5 MHz, with a ?6 dB bandwidth of 51.2%. When the transducer is concave or convex, its sound pressure level meets the detection requirements and can be used to detect cracks in steel pipes.

References

[1]  蒋危平, 方京, 编著. 超声检测学[M]. 武汉: 武汉测绘科技大学出版社, 1991: 85-92.
[2]  胡建恺, 张谦琳, 编著. 超声检测原理和方法[M]. 合肥: 中国科学技术大学出版社, 1993: 109-114.
[3]  Kim, T., Cui, Z., Chang, W.-Y., Kim, H., Zhu, Y. and Jiang, X. (2020) Flexible 1-3 Composite Ultrasound Transducers with Silver-Nanowire-Based Stretchable Electrodes. IEEE Transactions on Industrial Electronics, 67, 6955-6962.
https://doi.org/10.1109/TIE.2019.2937063
[4]  林荣辉, 孙翠敏, 尤晖, 等. 基于ZnO压电薄膜的柔性MEMS超声波换能器[J]. 压电与声光, 2016, 38(6): 851-854 860.
[5]  de Oliveira, T.F., Pai, C.N., Matuda, M.Y. et al. (2019) Development of a 2.25 MHz Flexible Array Ultrasonic Transducer. Research on Biomedical Engineering, 35, 27-37 .
https://doi.org/10.1007/s42600-019-00006-1
[6]  Peng, C., Chen, M., Sim, H.K., Zhu, Y. and Jiang, X. (2021) Noninvasive and Nonocclusive Blood Pressure Monitoring via a Flexible Piezo-Composite Ultrasonic Sensor. IEEE Sensors Journal, 21, 2642-2650.
https://doi.org/10.1109/JSEN.2020.3021923
[7]  Shih, J.L., Wu, K.T., Jen, C.K., Chiu, C.H., Tzeng, J.C. and Liaw, J.W. (2013) Applications of Flexible Ultrasonic Transducer Array for Defect Detection at 150 °C. Sensors, 13, 975-983.
https://doi.org/10.3390/s130100975
[8]  林书玉. 超声换能器的原理及设计[M]. 北京: 科学出版社, 2004: 20-28.
[9]  孙裕后, 王甫霖, 董杰, 靳丽, 王锋华, 董帅. 不同匹配层阵列式换能器的有限元仿真[J]. 压电与声光, 2022, 44(2): 273-277.
[10]  Hou, C., Fei, C., Li, Z., Zhang, S., Man, J., Chen, D., Wu, R., Li, D., Yang, Y. and Feng, W. (2022). Optimized Backing Layers Design for High Frequency Broad Bandwidth Ultrasonic Transducer. IEEE Transactions on Biomedical Engineering, 69, 475–481.
https://doi.org/10.1109/TBME.2021.3098567
[11]  张雪晴, 尹冠军, 张家裕, 冉建清, 杨雪冰, 郭建中. 超声换能器辐射特性的优化[J]. 应用声学, 2023, 42(3): 540-547.
[12]  侯京川, 鲜晓军, 李瑞峰, 曾祥明, 冯小东, 刘振华. 高频压电复合材料球形换能器仿真设计[J]. 压电与声光, 2023, 45(3): 425-428.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133