全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光学元器件磁辅助抛光特性探究
Exploration of Magnetic Assisted Polishing Characteristics of Optical Components

DOI: 10.12677/mos.2024.133202, PP. 2203-2213

Keywords: 磁性复合流体抛光,材料去除率,粗糙度,磁场分布
Magnetic Composite Fluid Polishing
, Material Removal Rate, Roughness, Magnetic Field Distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究磁性复合流体抛光中抛光间隙对熔石英玻璃去除特性的影响,对抛斑截面轮廓进行特征分析,通过对抛光斑轮廓进行三维重构,并对磁场空间分布进行了理论分析和实际测试,阐明抛光去除机理,确定了抛光斑表面粗糙度和、材料去除率和紫外光透过率随抛光间隙的影响规律,并建立了材料去除深度与磁通密度的关系曲线。实验结果表明:抛光斑的轴向方向和纵向方向截面轮廓分别呈现出“W”和“V”形;且同一抛光时间下,减小抛光间隙,MCF抛光能获得的更大的抛光斑长度、宽度及抛光深度;材料去除率与抛光间隙及空间磁场分布密切相关,抛光深度去除率最高可达1230 nm/min。
To investigate the effect of polishing gaps on the removal characteristics of fused quartz glass in magnetic composite fluid polishing, a characteristic analysis was conducted on the cross-section profile of the polishing spot. By reconstructing the polishing spot profile in three dimensions and conducting theoretical analysis and practical testing on the spatial distribution of the magnetic field, the polishing removal mechanism was elucidated. The influence of polishing gap on the surface roughness of the polishing spot, material removal rate, and ultraviolet light transmittance was determined, and the relationship curve between material removal depth and magnetic flux density was established. The experimental results show that the axial and longitudinal cross-sectional profiles of the polishing spot exhibit “W” and “V” shapes, respectively; Under the same polishing time, reducing the polishing gap can result in larger polishing spot length, width, and depth that MCF polishing can achieve; The material removal rate is closely related to the polishing gap and spatial magnetic field distribution, and the maximum removal rate of polishing depth can reach 1230 nm/min.

References

[1]  戴一帆, 钟曜宇, 石峰, 等. 强光光学元件加工技术发展[J]. 中国机械工程, 2020, 31(23): 2788-2797.
[2]  姜峰, 言兰, 黄阳, 徐西鹏. 磁场辅助加工的研究现状及其发展趋势[J]. 机械工程学报, 2016, 52(17): 1-9.
[3]  陈逢军, 徐志强, 程振勇, 尹韶辉. 硅油基磁性复合流体斜轴抛光特性研究[J]. 制造技术与机床, 2013(10): 34-37.
[4]  Shimada, K., Wu, Y.B. and Wong, Y.C. (2003) Effect of Magnetic Cluster and Magnetic Field on Polishing Using Magnetic Compound Fluid (MCF). Journal of Magnetism and Magnetic Materials, 262, 242-247.
https://doi.org/10.1016/S0304-8853(02)01497-X
[5]  焦黎, 吴勇波, 郭会茹. 磁场分布对磁性复合流体抛光材料去除率的影响[J]. 机械工程学报, 2013, 49(17): 79-84.
[6]  Guo, H.R., Wu, Y.B., Lu, D., et al. (2014) Effects of Pressure and Shear Stress on Material Removal Rate in Ultra-Fine Polishing of Optical Glass with Magnetic Compound Fluid Slurry. Journal of Materials Processing Technology, 214, 2759-2769.
https://doi.org/10.1016/j.jmatprotec.2014.06.014
[7]  林龙侨, 王振忠, 陈世平. 3D打印微结构工件的磁性复合流体抛光工艺研究[J]. 厦门大学学报(自然科学版), 2019, 58(1): 134-139.
[8]  魏久翔, 姜晨, 刘剑. 微槽的超声振动辅助磁性复合流体抛光工艺研究[J]. 上海理工大学学报, 2022, 44(5): 457-463.
[9]  杨航, 谢涛, 赵功, 贾阳, 何建国, 黄文. 磁流变抛光D型去除函数创成机制数值分析[J]. 武汉理工大学学报, 2021, 43(6): 89-94.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133