|
SiCp/Al超低温切削仿真模型构建及实验研究
|
Abstract:
颗粒增强型金属基复合材料由于其优异的综合性能在航空航天、精密电子等领域得到了广泛应用,SiCp/Al作为一种典型的复合材料,如何进一步提升其物理特性与可加工性能显得尤为重要,而超低温辅助加工技术已经被证明在金属切削领域具有显著的潜在研究可能。本文针对20%体积分数的SiCp/Al复合材料进行了一系列不同温度、不同应变率的拉伸与扭转试验,基于Johnson Cook理论建立了材料的超低温本构关系模型与断裂准则模型,并根据侧铣加工的特点,在Abaqus软件中建立了等效斜坡工件切削仿真模型,通过将仿真模拟铣削力与超低温铣削加工实验测得铣削力数据进行比对,验证了建立模型的有效性,最后利用建立的有限元仿真模型对超低温铣削过程的应力场、温度场进行了分析。
Particle-reinforced metal matrix composites have been widely used in aerospace, precision electronics, and other fields due to their excellent comprehensive performance. SiCp/Al, as a typical composite material, is particularly important to further enhance its physical properties and machinability, and cryogenic-assisted machining technology has been proven to have significant potential research possibilities in the field of metal cutting. In this paper, a series of tensile and torsion tests at different temperatures and strain rates were carried out for 20% volume fraction SiCp/Al composites, and the cryogenic intrinsic relationship model and fracture criterion model of the material were established based on the Johnson Cook theory, and the equivalent slope work- piece cutting simulation model was established in Abaqus software according to the characteristics of side milling machining. By comparing the simulated milling force with the experimentally measured milling force data of cryogenic milling processing, the validity of the established model is verified, and finally, the stress field and temperature field of the cryogenic milling process are analyzed by using the established finite element simulation model.
[1] | Sadhu, K.K., Mandal, N. and Sahoo, R.R. (2023) SiC/Graphene Reinforced Aluminum Metal Matrix Composites Prepared by Powder Metallurgy: A Review. Journal of Manufacturing Processes, 91, 10-43. https://doi.org/10.1016/j.jmapro.2023.02.026 |
[2] | Shaikh, M.B.N., Aziz, T., Arif, S., et al. (2020) Effect of Sintering Techniques on Microstructural, Mechanical and Tribological Properties of Al-SiC Composites. Surfaces and Interfaces, 20, Article ID: 100598. https://doi.org/10.1016/j.surfin.2020.100598 |
[3] | Yahia Hassan, A., Bahkali, A., YahyaMeryahi, M., et al. (2023) The Electrochemical Degradation, Wear Behavior and Machining of Metal Matrix Composites Based on 6xxx Aluminum Alloy with Ceramic Particulate Reinforcements: A Brief Review. Materials Today: Proceedings, 80, 377-381. https://doi.org/10.1016/j.matpr.2022.10.184 |
[4] | Vijay, R., Aju Kumar, V.N., Sadiq, A., et al. (2022) Influence of Cryogenic Treatment on Bulk and Surface Properties of Aluminium Alloys: A Review. Advances in Materials and Processing Technologies (Abingdon, England), 8, 4335-4346. https://doi.org/10.1080/2374068X.2022.2072085 |
[5] | Gao, Q., Jiang, X., Sun, H., et al. (2022) Effect Mechanism of Cryogenic Treatment on Ferroalloy and Nonferrous Alloy and Their Weldments: A Review. Materials Today Communications, 33, Article ID: 104830. https://doi.org/10.1016/j.mtcomm.2022.104830 |
[6] | 黄珂, 易幼平, 黄始全, 等. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 168-173. |
[7] | Wang, Z., Chen, J., Liu, B., et al. (2022) Effect of Deep Cryogenic Treatment on the Artificial Ageing Behavior of SiCp–AA2009 Composite. Metals, 12, Article 1767. https://doi.org/10.3390/met12101767 |
[8] | 王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建[J]. 材料导报, 2021, 35(10): 10096-10102. |
[9] | Sun, W., Duan, C. and Yin, W. (2020) Development of a Dynamic Constitutive Model with Particle Damage and Thermal Softening for Al/SiCp Composites. Composite Structures, 236, Article ID: 111856. https://doi.org/10.1016/j.compstruct.2020.111856 |
[10] | 李建明. 液氮冷却车削高温合金Inconel 718材料去除机理研究[D]: [硕士学位论文]. 济南: 济南大学, 2020. |
[11] | Kumar Reddy Sirigiri, V., Yadav Gudiga, V., Shankar Gattu, U., et al. (2022) A Review on Johnson Cook Material Model. Materials Today: Proceedings, 62, 3450-3456. https://doi.org/10.1016/j.matpr.2022.04.279 |
[12] | 赵仲林, 安立宝, 张好强, 等. TC4铣削切屑形态与表面形貌特征[J]. 表面技术, 2023, 52(5): 247-256. |
[13] | 杨嘉. 铝基碳化硅精密铣削过程有限元仿真及实验研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2012. |
[14] | Hribersek, M., Sajn, V., Pusavec, F., et al. (2017) The Procedure of Solving the Inverse Problem for Determining Surface Heat Transfer Coefficient between Liquefied Nitrogen and Inconel 718 Workpiece in Cryogenic Machining. Procedia CIRP, 58, 617-622. https://doi.org/10.1016/j.procir.2017.03.227 |
[15] | Dong, F., Huang, S., Yi, Y., et al. (2023) Enhanced Deep Drawing Formability and Deformation Mechanism of Aluminum Alloy at Cryogenic Temperature. Journal of Alloys and Compounds, 968, Article ID: 171992. https://doi.org/10.1016/j.jallcom.2023.171992 |