|
基于能量法和有限元法的四边简支矩形薄板屈曲临界荷载分析
|
Abstract:
结构的稳定性能直接关系到安全性和经济性,尤其是近代以来高强材料和薄壁结构的使用,稳定问题显得更加重要。本文介绍了四边简支矩形薄板在纵向集中荷载作用下的压屈以及用能量法求临界荷载的方法,通过一个实例,采用能量法及有限元法分析了该结构的屈曲稳定性能。分别选取一项三角级数和两项三角级数作为挠度表达式代入能量法公式中进行计算,并讨论了选取两项三角级数作为挠度表达式时的取值方法。使用ABAQUS对矩形薄板进行了特征值计算,结果证明,数值计算结果略大于能量法的理论解,能量法的理论解更偏安全。
The stability performance of structures is directly related to safety and economy, especially with the use of high-strength materials and thin-walled structures in modern times, stability issues have become more important. This article introduces the buckling of simply supported rectangular thin plates under longitudinal concentrated loads and the method of calculating critical loads using the energy method. Through an example, the buckling stability performance of the structure is analyzed using the energy method and finite element method. One trigonometric series and two trigonometric series are selected as deflection expressions to be used in the energy method formula for calculation, and the method of selecting two trigonometric series as deflection expressions is discussed. Using ABAQUS to calculate the eigenvalues of rectangular thin plates, the results show that the numerical calculation results are slightly larger than the theoretical solution of the energy method, and the theoretical solution of the energy method is more biased towards safety.
[1] | 王忠民, 计伊周. 矩形薄板在随从力作用下的动力稳定性分析[J]. 振动工程学报, 1992(1): 78-83. |
[2] | 杨端生, 廖瑛, 黄炎. 正交异性矩形薄板的稳定性分析[J]. 工程力学, 2002, 19(3): 55-58. |
[3] | 甘立飞, 王鑫伟, 王爱军. 矩形薄板受面内非均匀分布载荷稳定性分析[J]. 宇航学报, 2008, 29(4): 1457-1461. |
[4] | Eisenberger, M. and Alexandrov, A. (2003) Buckling Loads of Variable Thickness Thin Isotropic Plates. Thin-Walled Structures, 41, 871-889. https://doi.org/10.1016/S0263-8231(03)00027-2 |
[5] | Shufrin, I. and Eisenberger, M. (2007) Shear Buckling of Thin Plates with Constant In-Plane Stresses. International Journal of Structural Stability and Dynamics, 7, 179-192. https://doi.org/10.1142/S021945540700223X |
[6] | Shufrin, I., Rabinovitch, O. and Eisenberger, M. (2008) Elastic Nonlinear Stability Analysis of Thin Rectangular Plates through a Semi-Analytical Approach. International Journal of Solids and Structures, 46, 2075-2092. https://doi.org/10.1016/j.ijsolstr.2008.06.022 |
[7] | Ruocco, E., Minutolo, V. and Ciaramella, S. (2011) A Generalized Analytical Approach for the Buckling Analysis of Thin Rectangular Plates with Arbitrary Boundary Conditions. International Journal of Structural Stability and Dynamics, 11, 1-21. https://doi.org/10.1142/S0219455411003963 |
[8] | Ge, G., Yun, C.Z. and Zhang, D.W. (2015) The Moment Stability of Response on a Rectangular Thin Plate under In-Plane Narrow Band Random Excitation. Journal of Vibroengineering, 17, 1133-1141. |
[9] | 龙志勤, 王志刚, 习会峰. 简支矩形薄板非线性压曲的有限元分析研究[J]. 广西轻工业, 2010, 26(8): 81-83. |
[10] | 张永存, 李晓斌. 负泊松比效应对薄板稳定性的增益分析[C]//中国力学学会. 中国力学大会-2015论文摘要集. 上海: 中国力学学会, 2015: 313. |
[11] | Larionov, A.E., Rimshin, I.V. and Vasilkova, T.N. (2012) Energy Method of Estimation of Stability of Pressed Reinforced Concrete Elements. Structural Mechanics of Engineering Constructions and Buildings, No. 2, 77-81. |
[12] | Popa, C., Marin, C., Negrea, A. and Tomescu, G. (2016) The Comparative Analitical (Energy Method) and Numerical Study for the Circular Plates with Ribs. IOP Conference Series: Materials Science and Engineering, 147, Article ID: 012106. https://doi.org/10.1088/1757-899X/147/1/012106 |
[13] | Huang, Z.M. and Peng, L.X. (2024) An Improved Plate Deep Energy Method for the Bending, Buckling and Free Vibration Problems of Irregular Kirchhoff Plates. Engineering Structures, 301, Article ID: 117235. |
[14] | 徐芝纶. 弹性力学(下册) [M]. 北京: 高等教育出版社, 2006: 115-120. |