|
冻融循环作用下黄土的物理力学特性研究综述
|
Abstract:
我国分布着众多的黄土,尤其西北和华北部分地区大面积存在。这些区城又属于季节性冻土区,区域内的路基、边坡等与黄土密切相关的岩土工程不可避免地受到干湿–冻融循环的劣化作用,产生复杂变形。情况严重时会诱发诸如不均匀沉降、边坡失稳等工程病害,严重威胁相关工程的安全性和稳定性,亟需对干湿–冻融循环作用下压实黄土的变形特性开展全面研究。针对黄土在经历冻融循环后的土体强度问题,本文归纳总结了冻融循环对黄土微结构以及力学性质和参数产生的影响、改性黄土提高土体强度等的研究进展。
There are numerous loess in China, especially in the northwest and north parts of large area, these areas also belong to seasonal frozen regions, and the soil engineering closely related to loess, such as area of subgrade and slope, is inevitable subject to the deterioration of under dry-wet-freeze-thaw cycle, resulting in complex deformation. If the situation is serious, it will induce serious engineering diseases, such as uneven settlement and slope instability. It is a serious threat to the safety and stability of related projects, and it is urgent to carry out a comprehensive study on the deformation characteristics of compacted loess under the action of dry-wet-freeze-thaw cycle. In this paper, aiming at the soil strength problem of loess after freeze-thaw cycle, the influence of freeze-thaw cycle on loess microstructure, mechanical properties and parameters was summarized, and the research progress of modified loess to improve soil strength was summarized.
[1] | Lu, N. and Likos, W.J. (2004) Unsaturated Soil Mechanics. John Wiley & Sons Ltd., Hoboken. |
[2] | 陈仲颐. 非饱和土土力学[M]. 北京: 中国建筑工业出版社, 1997. |
[3] | 王清雅. 中国黄土研究简史[D]: [硕士学位论文]. 北京: 中国地质大学, 2020. |
[4] | 陈存利, 高鹏, 胡再强. 黄土的增湿变形特性及其与结构性的关系[J]. 岩石力学与工程学报, 2006, 25(7): 1352-1360. |
[5] | 宋春霞. 冻融作用对土物理力学性质影响的试验研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2007. |
[6] | 崔托维奇. 冻土力学[M]. 张长庆, 朱元林, 译. 北京: 科学出版社, 1985. |
[7] | Zeng, Z.T., Lu, H.B. and Zhao, Y.L. (2012) Wetting-Drying Effect of Expansive Soils and Its Influence on Slope Stability. Applied Mechanics & Materials, 170-173, 889-893. https://doi.org/10.4028/www.scientific.net/AMM.170-173.889 |
[8] | Guan, G.S., Rahardjo, H. and Leongeng, C. (2010) Shear Strength Equations for Unsaturated Soil under Drying and Wetting. Journal of Geotechnical and Geoenvironmental Engineering, 136, 594-606. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000261 |
[9] | Gallage, C.P.K. and Uchimura, T. (2006) Efects of Wetting and Drying on the Unsaturated Shear Strength of a Silty Sand under Low Suction. Proceedings of the Fourth International Conference on Unsaturated Soils, Carefree, 2-6 April 2006, 1247-1258. https://doi.org/10.1061/40802(189)102 |
[10] | 孙德安, 高游. 不同制样方法非饱和土的土水特性研究[J]. 岩土工程学报, 2015, 37(1): 91-97. |
[11] | 高立成. 固化剂改良黄土力学特性试验研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2013. |
[12] | Zhi, B., Yang, L. and Liu, E.L. (2014) Study on the Mechanical Properties of Lime-Cement-Treated Loess Soils. Applied Mechanics and Materials, 638-640, 1408-1413. |
[13] | Fredlund, D.G. (2000) The 1999 R.M. Hardy Lecture: The Implementation of Unsaturated Soil Mechanics into Geotechnical Engineering. Canadian Geotechnical Journal, 37, 963-985. https://doi.org/10.1139/t00-026 |
[14] | Ghasabkolaei, N., Choobbasti, A.J., Roshan, N. and Ghasemi, S.E. (2017) Geotechnical Properties of the Soils Modified with Nanomaterials: A Comprehensive Review. Archives of Civil and Mechanical Engineering, 17, 639-650. https://doi.org/10.1016/j.acme.2017.01.010 |
[15] | Huang, Y. and Wang, L. (2016) Experimental Studies on Nanomaterials for Soil Improvement: A Review. Environmental Earth Sciences, 75, Article No. 497. https://doi.org/10.1007/s12665-015-5118-8 |
[16] | Gao, Y., Qian, H., Li, X., Chen, J. and Jia, H. (2018) Effects of Lime Treatment on the Hydraulic Conductivity and Microstructure of Loess. Environmental Earth Sciences, 77, 435-461. https://doi.org/10.1007/s12665-018-7715-9 |
[17] | Ng, C.W.W. and Pang, Y.W. (2000) Experimental Investigations of the Soil-Water Characteristics of a Volcanic Soil. Canadian Geotechnical Journal, 37, 1252-1254. https://doi.org/10.1139/t00-056 |
[18] | Klausner, Y. (1991) Fundamentals of Continuum Mechanics of Soils. Springer, London. https://doi.org/10.1007/978-1-4471-1677-6 |
[19] | 李军, 刘奉银, 王磊, 等. 关于土水特征曲线滞回特性影响因素的研究[J]. 水利学报, 2015, 46(s1): 194-199. |
[20] | 王丽琴, 赵聪, 胡向阳, 等. 黄土强度及结构的各向异性研究[J]. 岩土工程学报, 2021, 43(z1): 25-29. |
[21] | 张城芋, 江双双, 陈四利, 等. 赤泥-水泥复合土的工程特性试验研究[J/OL]. 排灌机械工程学报, 2022: 1-8. http://kns.cnki.net/kcms/detail/32.1814.th.20220926.1712.002.html, 2022-10-15. |
[22] | 林泓民, 白兰兰, 彭劼, 等. 含泥量对砂质土流态固化处理效果的影响研究[J]. 河北工程大学学报(自然科学版), 2022, 39(3): 30-35. |
[23] | 孔德成, 孙治国, 贾方方. 微生物诱导碳酸钙沉淀技术改良黄土湿陷性研究[J]. 硅酸盐通报, 2022, 41(3): 969-975. |
[24] | 刘辰麟, 王学文, 王沈力, 等. 木质素磺酸钙改良黄土无侧限抗压强度试验研究[J]. 甘肃水利水电技术, 2022, 58(2): 19-21. |
[25] | 周小虎. 石灰粉煤灰稳定黄土的无侧限抗压强度研究[J]. 中国建材科技, 2021, 30(5): 90-93. |
[26] | 胡安栋, 符勇. 黄土改性与机理研究[J]. 能源与环保, 2021, 43(10): 116-121. |
[27] | 唐斌科. 石灰高炉矿渣稳定黄土的无侧限抗压强度研究[J]. 甘肃科技纵横, 2021, 50(9): 28-31. |
[28] | 刘雄美. 石灰粉煤灰水泥稳定黄土的力学性能研究[J]. 铁道建筑技术, 2021(9): 4-8. |
[29] | 黄涛, 方祥位, 张伟, 等. 活性氧化镁-微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10): 3300-3306 3316. |