|
基于介孔聚多巴胺纳米球的光热与化学动力学协同治疗
|
Abstract:
自由基是一种新型且有前景的乏氧肿瘤治疗方式。在本文中,利用介孔聚多巴胺(mPDA)纳米球结合不依赖于氧气的自由基发生器(AIPH)构建了一种纳米治疗剂mPDA@AIPH,从而实现高效的肿瘤治疗。在近红外光照射下,mPDA产生的光热效应会诱导AIPH快速分解,释放出具有细胞毒性的烷基自由基,从而导致细胞死亡。这种方式产生的自由基对诱导乏氧肿瘤细胞凋亡非常有效。
Free radicals have emerged as new-type and promising candidates for hypoxic tumor treatment. Herein, a biocompatible mesoporous polydopamine (mPDA) nanosphere is developed by combining an oxygen-independent radicals generator (AIPH) for efficient cancer therapy, denoted as mPDA@AIPH. Upon near-infrared irradiation, the photothermal effect generated by mPDA will induce rapid decomposition of AIPH to release cytotoxic alkyl radicals, leading to cancer cell death. The free radicals produced in this way are highly effective in inducing apoptosis in hypoxic cancer cells.
[1] | Wu, H., Liao, H., Li, F., et al. (2020) Bioactive ROS-Scavenging Nanozymes for Regenerative Medicine: Reestablishing the Antioxidant Firewall. Nano Select, 1, 285-297. https://doi.org/10.1002/nano.202000021 |
[2] | Yue Q, Wang M, Sun Z, et al. (2013) A Versatile Ethanol-Mediated Polymerization of Dopamine for Efficient Surface Modification and the Construction of Functional Core-Shell Nanostructures. Journal of Materials Chemistry B, 1, 6085-6093. https://doi.org/10.1039/c3tb21028f |
[3] | Ou C. J, Zhang Y. W, Pan D, et al. (2019) Zinc Porphyrin-Polydopamine Core-Shell Nanostructures for Enhanced Photodynamic/Photothermal Cancer Therapy. Materials Chemistry Frontiers, 3, 1786-1792. https://doi.org/10.1039/C9QM00197B |
[4] | Guan Q, Guo R, Huang S, et al. (2020) Mesoporous Polydopamine Carrying Sorafenib and SPIO Nanoparticles for MRI-Guided Ferroptosis Cancer Therapy. Journal of Controlled Release, 320, 392-403. https://doi.org/10.1016/j.jconrel.2020.01.048 |
[5] | Wan Y, Lu G, Zhang J, et al. (2019) A Biocompatible Free Radical Nanogenerator with Real-Time Monitoring Capability for High Performance Sequential Hypoxic Tumor Therapy. Advanced Functional Materials, 29, e1903436. https://doi.org/10.1002/adfm.201903436 |
[6] | Xiang H, Lin H, Yu L, et al. (2019) Hypoxia-Irrelevant Photonic Thermodynamic Cancer Nanomedicine. ACS Nano, 13, 2223-2235. https://doi.org/10.1021/acsnano.8b08910 |
[7] | Shen, Y., Dong, C., Xiang, H., et al. (2021) Engineering Oxygen-Irrelevant Radical Nanogenerator for Hypoxia-Independent Magnetothermodynamic Tumor Nanotherapy. Small Methods, 5, e2001087. https://doi.org/10.1002/smtd.202001087 |
[8] | Liu, G., Wang, L., Liu, J., et al. (2020) Engineering of a Core–Shell Nanoplatform to Overcome Multidrug Resistance via ATP Deprivation. Advanced Healthcare Materials, 9, e2000432. https://doi.org/10.1002/adhm.202000432 |
[9] | Gao, Q., Zhang, X., Yin, W., et al. (2018) Functionalized MoS2 Nanovehicle with Near-Infrared Laser-Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteria-Infected Wound Therapy. Small, 14, e1802290. https://doi.org/10.1002/smll.201802290 |
[10] | Li, Y., Zhou, J., Wang, L., et al. (2020) Endogenous Hydrogen Sulfide-Triggered MOF-Based Nanoenzyme for Synergic Cancer Therapy. ACS Applied Materials & Interfaces, 12, 30213-30220. https://doi.org/10.1021/acsami.0c08659 |
[11] | Yang, J., Xie, R., Feng, L., Liu, B., Lv, R., Li, C., Gai, S., He, F., Yang, P. and Lin, J. (2019) Hyperthermia and Controllable Free Radical Coenhanced Synergistic Therapy in Hypoxia Enabled by Near-Infrared-II Light Irradiation. ACS Nano, 13, 13144-13160. https://doi.org/10.1021/acsnano.9b05985 |