|
胆固醇在肿瘤及免疫细胞中的研究进展
|
Abstract:
胆固醇是细胞内重要的脂质,是细胞必不可少的膜结构的成分。细胞内的胆固醇通过摄取与细胞内合成来产生。胆固醇在癌症发展过程中所起的作用以及针对胆固醇的治疗一直是人们关注的焦点。胆固醇具有影响肿瘤微环境中肿瘤细胞及免疫细胞的功能。本文对胆固醇如何影响肿瘤微环境中肿瘤细胞及免疫细胞进行总结,并展望了通过干扰细胞胆固醇代谢的肿瘤免疫疗法。
Cholesterol is an important lipid in the cell and is an essential component of the membrane structure of the cell. Intracellular cholesterol is produced through uptake and intracellular synthesis. The role that cholesterol plays in the development of cancer and the treatments that target cholesterol have been the focus of much attention. Cholesterol can affect the function of tumor cells and immune cells in the tumor microenvironment. This article summarizes how cholesterol affects tumor cells and immune cells in the tumor microenvironment, and looks forward to tumor immunotherapy by interfering with cellular cholesterol metabolism.
[1] | Smith, B. and Land, H. (2012) Anticancer Activity of the Cholesterol Exporter ABCA1 Gene. Cell Reports, 2, 580-590. https://doi.org/10.1016/j.celrep.2012.08.011 |
[2] | Krycer, J.R. and Brown, A.J. (2013) Cholesterol Accumulation in Prostate Cancer: A Classic Observation from a Modern Perspective. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1835, 219-229. https://doi.org/10.1016/j.bbcan.2013.01.002 |
[3] | Bejarano, L., Jordao, M.J.C. and Joyce, J.A. (2021) Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 11, 933-959. https://doi.org/10.1158/2159-8290.CD-20-1808 |
[4] | Butler, J.M., Kobayashi, H. and Rafii, S. (2010) Instructive Role of the Vascular Niche in Promoting Tumour Growth and Tissue Repair by Angiocrine Factors. Nature Reviews Cancer, 10, 138-146. https://doi.org/10.1038/nrc2791 |
[5] | Cirri, P. and Chiarugi, P. (2012) Cancer-Associated-Fibroblasts and Tumour Cells: A Diabolic Liaison Driving Cancer Progression. Cancer and Metastasis Reviews, 31, 195-208. https://doi.org/10.1007/s10555-011-9340-x |
[6] | Hanahan, D. and Coussens, L.M. (2012) Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell, 21, 309-322. https://doi.org/10.1016/j.ccr.2012.02.022 |
[7] | Joyce, J.A. (2005) Therapeutic Targeting of the Tumor Microenvironment. Cancer Cell, 7, 513-520. https://doi.org/10.1016/j.ccr.2005.05.024 |
[8] | Goldstein, J.L. and Brown, M.S. (2009) The LDL Receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 431-438. https://doi.org/10.1161/ATVBAHA.108.179564 |
[9] | Chimento, A., Casaburi, I., Avena, P., et al. (2018) Cholesterol and Its Metabolites in Tumor Growth: Therapeutic Potential of Statins in Cancer Treatment. s in Endocrinology, 9, Article 807. https://doi.org/10.3389/fendo.2018.00807 |
[10] | Ikonen, E. (2008) Cellular Cholesterol Trafficking and Compartmentalization. Nature Reviews Molecular Cell Biology, 9, 125-138. https://doi.org/10.1038/nrm2336 |
[11] | Wang, Y., Rogers, P.M., Su, C., et al. (2008) Regulation of Cholesterologenesis by the Oxysterol Receptor, LXRα. Journal of Biological Chemistry, 283, 26332-26339. https://doi.org/10.1074/jbc.M804808200 |
[12] | Voisin, M., De Medina, P., Mallinger, A., et al. (2017) Identification of a Tumor-Promoter Cholesterol Metabolite in Human Breast Cancers Acting through the Glucocorticoid Receptor. Proceedings of the National Academy of Sciences of the United States of America, 114, E9346-E9355. https://doi.org/10.1073/pnas.1707965114 |
[13] | Lewis, C.A., Brault, C., Peck, B., et al. (2015) SREBP Maintains Lipid Biosynthesis and Viability of Cancer Cells Under Lipid-and Oxygen-Deprived Conditions and Defines a Gene Signature Associated with Poor Survival in Glioblastoma Multiforme. Oncogene, 34, 5128-5140. https://doi.org/10.1038/onc.2014.439 |
[14] | Cai, D., Wang, J., Gao, B., et al. (2019) RORγ Is a Targetable Master Regulator of Cholesterol Biosynthesis in a Cancer Subtype. Nature Communications, 10, Article No. 4621. https://doi.org/10.1038/s41467-019-12529-3 |
[15] | Yoshioka, Y., Sasaki, J., Yamamoto, M., et al. (2000) Quantitation by 1H-NMR of Dolichol, Cholesterol and Choline-Containing Lipids in Extracts of Normal and Phathological Thyroid Tissue. NMR in Biomedicine, 13, 377-383. https://doi.org/10.1002/1099-1492(200011)13:7<377::AID-NBM658>3.0.CO;2-E |
[16] | Jacobs, E.J., Newton, C.C., Thun, M.J., et al. (2011) Long-Term Use of Cholesterol-Lowering Drugs and Cancer Incidence in a Large United States Cohort. Cancer Research, 71, 1763-1771. https://doi.org/10.1158/0008-5472.CAN-10-2953 |
[17] | Cardwell, C.R., Hicks, B.M., Hughes, C., et al. (2014) Statin Use after Colorectal Cancer Diagnosis and Survival: A Population-Based Cohort Study. Journal of Clinical Oncology, 32, 3177-3183. https://doi.org/10.1200/JCO.2013.54.4569 |
[18] | Murtola, T.J., Visvanathan, K., Artama, M., et al. (2014) Statin Use and Breast Cancer Survival: A Nationwide Cohort Study from Finland. PLOS ONE, 9, e110231. https://doi.org/10.1371/journal.pone.0110231 |
[19] | Ravnskov, U., Rosch, P.J. and Mccully, K.S. (2015) Statins Do Not Protect Against Cancer: Quite the Opposite. Journal of Clinical Oncology, 33, 810-811. https://doi.org/10.1200/JCO.2014.58.9564 |
[20] | Ravnskov, U., Mccully, K.S. and Rosch, P.J. (2012) The Statin-Low Cholesterol-Cancer Conundrum. QJM: An International Journal of Medicine, 105, 383-388. https://doi.org/10.1093/qjmed/hcr243 |
[21] | Chang, C.C., Ho, S.C., Chiu, H.F., et al. (2011) Statins Increase the Risk of Prostate Cancer: A Population-Based Case-Control Study. Prostate, 71, 1818-1824. https://doi.org/10.1002/pros.21401 |
[22] | Paul, H., Thierry, R., Claude, S., et al. (2006) Use of Statins and Outcome of BCG Treatment for Bladder Cancer. The New England Journal of Medicine, 355, 2706-2707. https://doi.org/10.1056/NEJMc062714 |
[23] | Yang, Z., Qin, W., Chen, Y., et al. (2018) Cholesterol Inhibits Hepatocellular Carcinoma Invasion and Metastasis by Promoting CD44 Localization in Lipid Rafts. Cancer Letters, 429, 66-77. https://doi.org/10.1016/j.canlet.2018.04.038 |
[24] | Zitvogel, L., Tesniere, A. and Kroemer, G. (2006) Cancer Despite Immunosurveillance: Immunoselection and Immunosubversion. Nature Reviews Immunology, 6, 715-727. https://doi.org/10.1038/nri1936 |
[25] | Kaech, S.M. and Cui, W. (2012) Transcriptional Control of Effector and Memory CD8 T Cell Differentiation. Nature Reviews Immunology, 12, 749-761. https://doi.org/10.1038/nri3307 |
[26] | Ma, X., Bi, E., Lu, Y., et al. (2019) Cholesterol Induces CD8 T Cell Exhaustion in the Tumor Microenvironment. Cell Metabolism, 30, 143-156.E5. https://doi.org/10.1016/j.cmet.2019.04.002 |
[27] | Swamy, M., Beck-Garcia, K., Beck-Garcia, E., et al. (2016) A Cholesterol-Based Allostery Model of T Cell Receptor Phosphorylation. Immunity, 44, 1091-1101. https://doi.org/10.1016/j.immuni.2016.04.011 |
[28] | Wherry, E.J. (2011) T Cell Exhaustion. Nature Immunology, 12, 492-499. https://doi.org/10.1038/ni.2035 |
[29] | Wang, F., Beck-Garcia, K., Zorzin, C., et al. (2016) Inhibition of T Cell Receptor Signaling by Cholesterol Sulfate, a Naturally Occurring Derivative of Membrane Cholesterol. Nature Immunology, 17, 844-850. https://doi.org/10.1038/ni.3462 |
[30] | Yang, W., Bai, Y., Xiong, Y., et al. (2016) Potentiating the Antitumour Response of CD8 T Cells by Modulating Cholesterol Metabolism. Nature, 531, 651-655. https://doi.org/10.1038/nature17412 |
[31] | Yasumasu, T., Takahara, K., Sadayasu, T., et al. (2003) Effect of Plasma Lipoproteins on Natural Killer Cell. Journal of Gerontology, 58, M561-M565. https://doi.org/10.1093/gerona/58.6.M561 |
[32] | Qin, W.H., Yang, Z.S., Li, M., et al. (2020) High Serum Levels of Cholesterol Increase Antitumor Functions of Nature Killer Cells and Reduce Growth of Liver Tumors in Mice. Gastroenterology, 158, 1713-1727. https://doi.org/10.1053/j.gastro.2020.01.028 |
[33] | Mehla, K. and Singh, P.K. (2019) Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 5, 822-834. https://doi.org/10.1016/j.trecan.2019.10.007 |
[34] | Noy, R. and Pollard, J.W. (2014) Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 41, 49-61. https://doi.org/10.1016/j.immuni.2014.06.010 |
[35] | De Vos Van Steenwijk, P.J., Ramwadhdoebe, T.H., Goedemans, R., et al. (2013) Tumor-Infiltrating CD14-Positive Myeloid Cells and CD8-Positive T-Cells Prolong Survival in Patients with Cervical Carcinoma. International Journal of Cancer, 133, 2884-2894. https://doi.org/10.1002/ijc.28309 |
[36] | Hagemann, T., Lawrence, T., Mcneish, I., et al. (2008) “Re-Educating” Tumor-Associated Macrophages by Targeting NF-κB. Journal of Experimental Medicine, 205, 1261-1268. https://doi.org/10.1084/jem.20080108 |
[37] | Mantovani, A., Allavena, P., Sica, A., et al. (2008) Cancer-Related Inflammation. Nature, 454, 436-444. https://doi.org/10.1038/nature07205 |
[38] | Goossens, P., Rodriguez-Vita, J., Etzerodt, A., et al. (2019) Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming and Tumor Progression. Cell Metabolism, 29, 1376-1389.E4. https://doi.org/10.1016/j.cmet.2019.02.016 |