|
微生物诱导碳酸钙沉积(MICP)固化土体研究进展
|
Abstract:
土地荒漠化严重危害人类的生存和可持续发展。微生物诱导碳酸钙沉积技术(MICP)是近年来兴起的经济、环保和耐久的防风治沙方法。为了研究MICP固化土体的工程特性,本文对MICP进行了系统的归纳总结,从MICP的国内外发展与现状、MICP固化土体的力学特性、MICP固化土体的作用机理分析了MICP对固化土体的效果。为MICP的发展提供了参考。
Land desertification seriously endangers human existence and sustainable development. Microbial induced calcium carbonate deposition (MICP) is an economical, environmentally friendly and durable method for wind and sand control. In order to study the engineering characteristics of MICP solidified soil, this paper systematically summarized MICP, and analyzed the effect of MICP on solidified soil from the development and current situation of MICP at home and abroad, the mechanical properties of MICP solidified soil and the action mechanism of MICP solidified soil. It provides a reference for the development of MICP.
[1] | 王万明. 土地沙漠化原因及林业防沙治沙措施[J]. 农业灾害研究, 2023, 13(4): 144-146. |
[2] | 韩风雷, 张学富, 喻文兵, 等. 风积沙环境下高等级公路冻土块石路基降温性能分析[J]. 冰川冻土, 2018, 40(3): 528-538. |
[3] | 唐忠亮, 严少发. 风积沙路基边坡防护及防沙害关键施工技术[J]. 施工技术, 2020, 49(S1): 1375-1377. |
[4] | 延西利, 马润前, 张玉福, 等. 榆林地区风积沙的工程分类[J]. 公路, 2021, 66(3): 54-60. |
[5] | 聂如松, 谭永长, 郭一鹏, 等. 风积沙-土工格栅界面摩擦特性拉拔试验研究[J]. 铁道科学与工程学报, 2022, 19(11): 3235-3245. |
[6] | 金旻昊, 崔强, 周楠, 等. 水泥固化作用对风积沙试样抗剪强度影响机制的试验研究[J]. 工业建筑, 2019, 49(7): 108-112 168. |
[7] | 姚佳禹. 高速公路风积沙路基填筑质量控制技术研究[J]. 建筑技术开发, 2017, 44(20): 111-112. |
[8] | 程锋梅. 三类株型草本植物固沙作用的风洞实验对比研究[D]: [硕士学位论文]. 乌鲁木齐: 新疆农业大学, 2022. |
[9] | 安艳玲. 利用废弃含盐尾矿砂制备机械沙障的技术研究[D]: [硕士学位论文]. 张家口: 河北建筑工程学院, 2022. |
[10] | 乔敬伟. 穿沙公路沙柳防护带平茬恢复期辅助沙障设置模式研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古农业大学, 2019. |
[11] | Deng, W. and Wang, Y. (2018) Investigating the Factors Affecting the Properties of Coral Sand Treated with Microbially Induced Calcite Precipitation. Advances in Civil Engineering, 2018, Article ID: 9590653. https://doi.org/10.1155/2018/9590653 |
[12] | Gui, R., Pan, Y.X., Ding, D.X., et al. (2018) Experimental Study on the Fine-Grained Uranium Tailings Reinforced by MICP. Advances in Civil Engineering, 2018, Article ID: 2928985. https://doi.org/10.1155/2018/2928985 |
[13] | Stocks-Fischer, S., Galinat, J.K. and Bang, S.S. (1999) Microbiological Precipitation of CaCO3. Soil Biology and Biochemistry, 31, 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6 |
[14] | Muynck, W.D., Belie, N.D. and Verstraete, W. (2010) Microbial Carbonate Precipitation in Construction Materials: A Review. Ecological Engineering, 36, 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006 |
[15] | 王鑫, 靳正忠, 施建飞, 等. 植物纤维毯覆盖对干旱区尾矿砂水热分布的影响[J]. 干旱区地理, 2023, 46(9): 1467-1480. |
[16] | 肖志阳. 基于改进的微生物诱导碳酸钙沉积技术加固土体试验研究[D]: [硕士学位论文]. 郑州: 华北水利水电大学, 2021. |
[17] | 刘家明. 盐溶液环境下微生物固化砂的物理力学特性及微观结构试验研究[D]: [硕士学位论文]. 广州: 广州大学, 2021. |
[18] | Sel, I., Zhan, H.B., Cibik, R., et al. (2015) Bacteria-Induced Cementation Process in Loose Sand Medium. Marine Geo Resources & Geotechnology, 33, 403-407. https://doi.org/10.1080/1064119X.2014.909912 |
[19] | Brossi, D.L. and Julia, M. (2016) Soil-Derived Microbial Consortia Enriched with Different Plant Biomass Reveal Distinct Players Acting in Lignocellulose Degradation. Microbial Ecology, 71, 616-627. https://doi.org/10.1007/s00248-015-0683-7 |
[20] | 梁隽灵, 赵寄橦, 袁杰, 等. 碳纤维微生物固化砂力学性能及颗粒形状分析[J]. 科学技术与工程, 2022, 22(30): 13434-13440. |
[21] | Li, M., Li, L., Ogbonnaya, U., et al. (2016) Influence of Fiber Addition on Mechanical Properties of MICP-Treated Sand. Journal of Materials in Civil Engineering, 28, Article ID: 04015166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001442 |
[22] | Choi, S.G., Wang, K., Wen, Z., et al. (2017) Mortar Crack Repair Using Microbial Induced Calcite Precipitation Method. Cement and Concrete Composites, 83, 209-221. https://doi.org/10.1016/j.cemconcomp.2017.07.013 |
[23] | Cheng, L. and Shahin, M. (2016) Urease Active Bio-Slurry: A Novel Soil Improvement Approach Based on Microbially Induced Calcite Precipitation. Canadian Geotechnical Journal, 53, 1376-1385. https://doi.org/10.1139/cgj-2015-0635 |
[24] | Li, M., Cheng, X.H. and Guo, H.X. (2013) Heavy Metal Removal by Biomineralization of Urease Producing Bacteria Isolated from Soil. International Biodeterioration & Biodegradation, 76, 81-85. https://doi.org/10.1016/j.ibiod.2012.06.016 |
[25] | Liu, B., Zhu, C., Tang, C.S., et al. (2020) Bio-Remediation of Desiccation Cracking in Clayey Soils through Microbially Induced Calcite Precipitation (MICP). Engineering Geology, 264, Article ID: 105389. https://doi.org/10.1016/j.enggeo.2019.105389 |
[26] | 何延龙, 赵靓, 黄海, 等. MICP技术及其在油气田开发过程中的应用进展[J]. 油气地质与采收率, 2023, 30(4): 106-115. |
[27] | 赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]: [博士学位论文]. 北京: 中国地质大学(北京), 2014. |
[28] | Tang, C.S., Yin, L., Jiang, N., et al. (2020) Factors Affecting the Performance of Microbial-Induced Carbonate Precipitation (MICP) Treated Soil: A Review. Environmental Earth Sciences, 79, Article No. 94. https://doi.org/10.1007/s12665-020-8840-9 |
[29] | Wen, K., Li, Y., Liu, S., et al. (2019) Evaluation of MICP Treatment through EC and pH Tests in Urea Hydrolysis Process. Environmental Geotechnics, 8, 274-281. https://doi.org/10.1680/jenge.17.00108 |
[30] | Cui, M.J., Lai, H.J., Hoang, T., et al. (2021) One-Phase-Low-pH Enzyme Induced Carbonate Precipitation (EICP) Method for Soil Improvement. Acta Geotechnica, 16, 481-489. https://doi.org/10.1007/s11440-020-01043-2 |
[31] | Liu, S., Wen, K., Armwood, C., et al. (2019) Enhancement of MICP-Treated Sandy Soils against Environmental Deterioration. Journal of Materials in Civil Engineering, 31, Article ID: 04019294. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002959 |
[32] | 常道琴, 宋乃平, 岳健敏, 等. 干旱区重金属污染尾矿土MICP注浆修复效果[J]. 生态学杂志, 2023, 42(12): 2864-2873. |
[33] | 张永杰, 欧阳健, 黄万东, 等. 胶结液浓度对微生物固化花岗岩残积土强度特性的影响规律[J]. 湖南大学学报(自然科学版), 2024, 51(3): 121-129. |
[34] | 赵志峰, 刘德民. 采用MICP加固不同掺砂比例粉土的试验研究[J]. 东南大学学报(自然科学版), 2023, 53(2): 270-277. |
[35] | 王子文, 魏然, 吴帅峰, 等. MICP固化粉煤灰的强度效应与机制分析[J]. 岩土工程学报, 2023, 45(S1): 88-91. |
[36] | 魏然, 张丽雅, 肖智睿, 等. 基于MICP技术的膨胀土变形控制机理研究[J]. 岩土工程学报, 2023, 45(S1): 92-96. |
[37] | Whiffin, V.S. (2004) Microbial CaCO3 Precipitation for the Production of Biocement. Ph.D. Thesis, Murdoch University, Perth. |
[38] | Mujah, D., Shahin, M.A. and Cheng, L. (2017) State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization. Geomicrobiology Journal, 34, 524-537. https://doi.org/10.1080/01490451.2016.1225866 |
[39] | Qabany, A.A. and Soga, K. (2014) Effect of Chemical Treatment Used in MICP on Engineering Properties of Cemented Soils. In: Al Qabany, A., Soga, K. and Laloui, L., Eds., Bio- and Chemo-Mechanical Processes in Geotechnical Engineering: Géotechnique Symposium in Print 2013, ICE Publishing, Miami Lakes, 107-115. https://doi.org/10.1680/bcmpge.60531.010 |
[40] | Hataf, N. and Baharifard, A. (2020) Reducing Soil Permeability Using Microbial Induced Carbonate Precipitation (MICP) Method: A Case Study of Shiraz Landfill Soil. Geomicrobiology Journal, 37, 147-158. https://doi.org/10.1080/01490451.2019.1678703 |
[41] | Iamchaturapatr, J., Piriyakul, K., Ketklin, T., et al. (2021) Sandy Soil Improvement Using MICP-Based Urease Enzymatic Acceleration Method Monitored by Real-Time System. Advances in Materials Science and Engineering, 2021, Article ID: 6905802. https://doi.org/10.1155/2021/6905802 |
[42] | Li, D., et al. (2018) Experimental Investigation of Solidifying Desert Aeolian Sand Using Microbially Induced Calcite Precipitation. Construction and Building Materials, 172, 251-262. https://doi.org/10.1016/j.conbuildmat.2018.03.255 |
[43] | Tian, K., Wang, X., Zhang, S., et al. (2020) Effect of Reactant Injection Rate on Solidifying Aeolian Sand via Microbially Induced Calcite Precipitation. Journal of Materials in Civil Engineering, 32, Article ID: 04020291. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003391 |
[44] | 胡其志, 霍伟严, 马强, 等. MICP联合纤维加筋黄土的力学性能及水稳性研究[J]. 人民长江, 2023, 54(8): 227-232 248. |
[45] | 彭丽云, 陈星, 齐吉琳, 等. 微生物加固粉土的强度特性及加固机理研究[J]. 材料导报, 2023, 2(23): 1-12. |
[46] | Li, G., Liu, J., Zhang, J., et al. (2023) Shear Strength Behaviors of Aeolian Sand Solidified by Microbially Induced Calcite Precipitation and Basalt Fiber Reinforcement. Materials, 16, Article 5857. https://doi.org/10.3390/ma16175857 |
[47] | Liu, J., Li, X., Li, G., et al. (2023) Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR). Materials, 16, Article 1949. https://doi.org/10.3390/ma16051949 |
[48] | Tiwari, N., Satyam, N. and Sharma, M. (2021) Micro-Mechanical Performance Evaluation of Expansive Soil Biotreated with Indigenous Bacteria Using MICP Method. Scientific Reports, 11, Article No. 10324. https://doi.org/10.1038/s41598-021-89687-2 |
[49] | Behzadipour, H. and Sadrekarimi, A. (2023) Effect of Microbial-Induced Calcite Precipitation on Shear Strength of Gold Mine Tailings. Bulletin of Engineering Geology and the Environment, 82, Article No. 331. https://doi.org/10.1007/s10064-023-03357-3 |
[50] | Prongmanee, N., Horpibulsuk, S., Dulyasucharit, R., et al. (2023) Novel and Simplified Method of Producing Microbial Calcite Powder for Clayey Soil Stabilization. Geomechanics for Energy and the Environment, 35, Article ID: 100480. https://doi.org/10.1016/j.gete.2023.100480 |
[51] | Li, C., Bai, S., Zhou, T., et al. (2020) Strength-Increase Mechanism and Microstructural Characteristics of a Biotreated Geomaterial. Frontiers of Structural and Civil Engineering, 14, 599-608. https://doi.org/10.1007/s11709-020-0606-7 |
[52] | Zeitouny, J., Lieske, W., Alimardani Lavasan, A., et al. (2023) Impact of New Combined Treatment Method on the Mechanical Properties and Microstructure of MICP-Improved Sand. Geotechnics, 3, 661-685. https://doi.org/10.3390/geotechnics3030036 |
[53] | Cheshomi, A. and Mansouri, S. (2019) Study the Grain Size and Infiltration Method Effects for Sand Soil Improvement Using the Microbial Method. Geomicrobiology Journal, 37, 355-365. https://doi.org/10.1080/01490451.2019.1705437 |
[54] | Zhang, B.Z. (2020) Effects of Fly Ash on Sand Fixation with Microbial-Induced Carbonate. Journal of Highway and Transportation Research and Development (English Edition), 14, 51-56. https://doi.org/10.1061/JHTRCQ.0000729 |
[55] | Gao, Y.F. and Tang, X.Y. (2018) Microbially Induced Calcite Precipitation for Seepage Control in Sandy Soil. Geomicrobiology Journal, 36, 366-375. https://doi.org/10.1080/01490451.2018.1556750 |
[56] | Gowthaman, S. (2019) Feasibility Study for Slope Soil Stabilization by Microbial Induced Carbonate Precipitation (MICP) Using Indigenous Bacteria Isolated from Cold Subarctic Region. SN Applied Sciences, 1, 1480-1508. https://doi.org/10.1007/s42452-019-1508-y |
[57] | Meng, H., Gao, Y.F., He, J., et al. (2021) Microbially Induced Carbonate Precipitation for Wind Erosion Control of Desert Soil: Field-Scale Tests. Geoderma, 383, Article ID: 114723. https://doi.org/10.1016/j.geoderma.2020.114723 |
[58] | Cheshomi, A. and Mansouri, S. (2018) Improving the Shear Strength of Quartz Sand Using the Microbial Method. Geomicrobiology Journal, 13, 2521-2532. |
[59] | Lai, H.J., Cui, M.J. and Chu, J. (2023) Effect of pH on Soil Improvement Using One-Phase-Low-pH MICP or EICP Biocementation Method. Acta Geotechnica, 18, 3259-3272. https://doi.org/10.1007/s11440-022-01759-3 |
[60] | Imran, M. and Gowthaman, S. (2020) The Influence of the Addition of Plant-Based Natural Fibers (Jute) on Bio Cemented Sand Using MICP Method. Materials, 182, 765-775. https://doi.org/10.3390/ma13184198 |
[61] | Zhao, Y. (2020) Enhancing Strength of MICP-Treated Sand with Scrap of Activated Carbon-Fiber Felt. Journal of Materials in Civil Engineering, 32, 1943-5533. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003136 |
[62] | Srinivas, M.K., Alengaram, U.J., Ibrahim, S., et al. (2024) Feasibility Study on the Use of Microalgae as an External Crack Healing Agent for Cement Mortar Rehabilitation. Journal of Sustainable Cement-Based Materials, 13, 17-32. https://doi.org/10.1080/21650373.2023.2249889 |
[63] | Meng, H., Shu, S., Gao, Y., et al. (2021) Kitchen Waste for Sporosarcina pasteurii Cultivation and Its Application in Wind Erosion Control of Desert Soil via Microbially Induced Carbonate Precipitation. Acta Geotechnica, 16, 4045-4059. https://doi.org/10.1007/s11440-021-01334-2 |
[64] | Soda, P.R.K., Mogal, A., Chakravarthy, K., et al. (2024) Performance Assessment of Sustainable Biocement Mortar Incorporated with Bacteria-Encapsulated Cement-Coated Alginate Beads. Construction and Building Materials, 411, Article ID: 134198. https://doi.org/10.1016/j.conbuildmat.2023.134198 |
[65] | Zhao, Y., Wang, Q., Yuan, M., et al. (2021) The Effect of MICP on Physical and Mechanical Properties of Silt with Different Fine Particle Content and Pore Ratio. Applied Sciences, 12, Article 139. https://doi.org/10.3390/app12010139 |