全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铝钛菁的表面增强拉曼散射研究
Study on Surface Enhanced Raman Scattering of Alumino-Titanium Cyanine Cyanine

DOI: 10.12677/mos.2024.133194, PP. 2111-2119

Keywords: 金纳米球,金纳米立方体,表面增强拉曼散射,有限时域差分模拟
Gold Nanospheres
, Gold Nanocubes, Surface-Enhanced Raman Scattering Spectroscopy, Finite Difference Time Domain Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

表面拉曼增强(Surface-Enhanced Raman Scattering, SERS)是一种通过在金属表面产生的局部电磁场增强拉曼散射信号的技术。这种增强效应可用于提高分子的检测灵敏度,对于表面吸附的分子进行检测和分析具有重要意义。在光学工程中,铝钛菁常被用于SERS的研究,主要因为它具有适当的分子结构和光学性质,能够与金属表面相互作用,从而增强拉曼信号。常用的金属基底包括银、金、铜等。这些金属表面对铝钛菁的吸附和相互作用能够引起局部电磁场的增强效应。在本研究中,我们用二种不同形状的金纳米结构金纳米球、金纳米立方体(AuNs、AuCube)以研究其在SERS信号中的表现。结果表明,越复杂的结构会导致SERS增强越强,我们用二种不同形状的金纳米结构(AuNs、AuCube)以研究其在SERS信号中的表现。我们经过有限时域差分模拟(FDTD)对这些纳米结构进行模拟,模拟结果与实验结果一致。SERS技术结合铝钛菁可以显著提高分子的检测灵敏度。这对于追踪和检测低浓度的生物分子、药物、化学物质等具有重要价值,尤其在医学诊断和环境监测领域。
Surface-Enhanced Raman Scattering (SERS) is a technique that enhances Raman scattering signals through local electromagnetic fields generated on metal surfaces. This enhancement effect can be used to improve the detection sensitivity of molecules, which is of great significance for the detection and analysis of surface-adsorbed molecules. In optical engineering, aluminum-titanium cyanine is often used in the study of SERS, mainly because it has the appropriate molecular structure and optical properties, and is able to interact with metal surfaces to enhance the Raman signal. Commonly used metal substrates include silver, gold, copper, etc. The adsorption and interaction of these metal surfaces on aluminum-titanium cyanine can cause the enhancement effect of local electromagnetic fields. In this study, we used two different shapes of gold nanostructured gold nanospheres and gold nanocubes (AuNs, AuCube) to study their performance in SERS signals. The results showed that the more complex the structure, the stronger the SERS enhancement, and we used two different shapes of gold nanostructures (AuNs and AuCube) to study their performance in SERS signals. These nanostructures were simulated by finite time-domain differential simulation (FDTD), and the simulation results were consistent with the experimental results. SERS technology combined with aluminum-titanium cyanine can significantly improve the detection sensitivity of molecules. This is of great value for tracking and detecting low concentrations of biomolecules, drugs, chemicals, etc., especially in the fields of medical diagnostics and environmental monitoring.

References

[1]  Fleischmann, M., Hendra, P.J. and Mcquillan, A.J. (1974) Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters, 26, 163-166.
https://doi.org/10.1016/0009-2614(74)85388-1
[2]  Nie, S. and Emory, S. (1997) Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 257, 1102-1106.
https://doi.org/10.1126/science.275.5303.1102
[3]  Moskovits, M. (1978) Surface Roughness and the Enhanced Intensity of Raman Scattering by Molecules Adsorbed on Metals. The Journal of Chemical Physics, 69, 4159-4159.
https://doi.org/10.1063/1.437095
[4]  肖建喜, 粘琳格. 一种高稳定性的胶原蛋白靶向SERS多肽探针及其在肝纤维化诊断中的应用[P]. 中国, CN202210909635.8. 2023-11-24.
[5]  李永强, 王春妮, 徐国鹏, 等. 一种多重SERS信号增强的纳米“三明治”细菌检测系统及其制备方法[P]. 中国, CN202310149926.6. 2023-11-24.
[6]  傅乃武, 刘朝阳, 燕利学. 磺化铝酞菁光动力治疗合并高温对小鼠肝癌治疗的协同作用[J]. 中国激光医学杂志, 1996, 4(1): 27-31.
[7]  Qualls, M.M., Kim, J.M. and Thompson, D.H. (2003) Tumor Imaging and Phototherapy of Folate-Positive Tumor Cells Using Folate-DPPIsC Liposomes Loaded with AlpCS(4)(-) as Molecular Beacon. Journal of Liposome Research, 13, 89-90.
[8]  Santos, A.E., Laranjinha, J.A.N. and Almeida, L.M. (2010) Sulfonated Chloroaluminum Phthalocyanine Incorporates into Human Plasma Lipoproteins: Photooxidation of Low‐Density Lipoproteins. Photochemistry & Photobiology, 67, 378-385.
https://doi.org/10.1111/j.1751-1097.1998.tb05214.x
[9]  Irena, M., Ewelina, W. and Wlodzimierz, T. (2020) Sulfonated Hydroxyaluminum Phthalocyanine-Biogenic Au/Ag Alloy Nanoparticles Mixtures for Effective Photo-Eradication of Candida albicans. Photodiagnosis and Photodynamic Therapy, 32, Article ID: 102016.
https://doi.org/10.1016/j.pdpdt.2020.102016
[10]  Zhou, W., Feng, Z., Xiong, Y., et al. (2022) Visualization of Ferroelectric Domains in Thin Films of Molecular Materials Using Confocal Micro-Raman Spectroscopy. Chemical Research in Chinese Universities, 38, 1394-1399.
https://doi.org/10.1007/s40242-022-2102-1
[11]  Xie, C., Mace, J., Dinno, M.A., et al. (2005) Identification of Single Bacterial Cells in Aqueous Solution Using Confocal Laser Tweezers Raman Spectroscopy. Analytical Chemistry, 77, 4390-4397.
https://doi.org/10.1021/ac0504971
[12]  Zhang, S., Erckens, R.J., Jongsma, F.H.M., et al. (2021) Design and Performance of a Dark‐Field Probe with Confocal Raman Spectroscopy for Ophthalmic Applications. Journal of Raman Spectroscopy, 52, 1371-1375.
https://doi.org/10.1002/jrs.6125
[13]  Wang, Z.L. (2000) Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. Journal of Physical Chemistry B, 104, 1153-1175.
https://doi.org/10.1021/jp993593c
[14]  耿伟. 单层密排贵金属纳米颗粒孔阵列结构的制备及研究[P]. 中国, CN113203724A. 2021-08-03.
[15]  王诗淼, 王晶, 刘军, 等. 不同长径比金纳米双锥对光敏剂荧光和光动力疗法效果的增强[J]. 中国激光, 2017, 44(6): 280-286.
[16]  Gomes, E.R., Almeida, R.D., Carvalho, A., et al. (2010) Nitric Oxide Modulates Tumor Cell Death Induced by Photodynamic Therapy through a CGMP-Dependent Mechanism. Photochemistry & Photobiology, 76, 423-430.
https://doi.org/10.1562/0031-8655(2002)0760423NOMTCD2.0.CO2
[17]  陈楠, 王蕊, 王蕾. 等离子体技术在金属材料表面改性中的应用[J]. 科技与创新, 2023, 155(16): 149-151.
[18]  Zhao, L. and Zhao, T. (2021) Research on Raman Imaging Technology Based on Surface Enhanced Raman Scattering. IOP Conference Series Earth and Environmental Science, 769, 42-47.
https://doi.org/10.1088/1755-1315/769/4/042047
[19]  Wang, H.L., You, E.M., Panneerselvam, R., et al. (2021) Advances of Surface-Enhanced Raman and IR Spectroscopies: From Nano/Microstructures to Macro-Optical Design. Light: Science & Applications, 161, 19-28.
https://doi.org/10.1038/s41377-021-00599-2
[20]  Lin, X.M., Cui, Y., Xu, Y.H., et al. (2009) Surface-Enhanced Raman Spectroscopy: Substrate-Related Issues. Analytical and Bioanalytical Chemistry, 394, 1729-1745.
https://doi.org/10.1007/s00216-009-2761-5
[21]  Xie, J., Liang, D. and Zhang, Z. (2021) Energy-Preserving Local Mesh-Refined Splitting FDTD Schemes for Two Dimensional Maxwell’s Equations. Journal of Computational Physics, 425, Article ID: 109896.
https://doi.org/10.1016/j.jcp.2020.109896
[22]  Amanatiadis, S., Zygiridis, T., Ohtani, T., et al. (2021) A Consistent Scheme for the Precise FDTD Modeling of the Graphene Interband Contribution. IEEE Transactions on Magnetics, 57, Article ID: 1600104.
https://doi.org/10.1109/TMAG.2021.3068870
[23]  Esselle, K.P. and Foroughipour, M. (1999) Analysis of Inclined Microstrip Patch Antenna Using Enhanced FDTD Equations. Electronics Letters, 35, 853-854.
https://doi.org/10.1049/el:19990578
[24]  Luk, M.M.H. and Grace, E.J. (2022) One-Dimensional Finite-Difference Time-Domain and Iterative Schemes for Computing the Behaviour of Electromagnetic Fields in Dielectric Structures. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 34, E2866.1-E2866.4.
[25]  Ren, J., Zhou, X. and Wang, Y. (2023) In Situ Passivation and Thiol-Mediated Anchoring of Perovskite Quantum Dots in Mesoporous Covalent-Organic Frameworks. Chemical Engineering Journal, 454, Article ID: 140285.
https://doi.org/10.1016/j.cej.2022.140285
[26]  Kantartzis, N. (2023) Robust FDTD Modeling of Graphene-Based Conductive Materials with Transient Features for Advanced Antenna Applications. Nanomaterials, 13, Article No. 384.
https://doi.org/10.3390/nano13030384
[27]  Wang, J., Zhuo, X.L., Mao, R.H., et al. (2019) AlPcS-Loaded Gold Nanobipyramids with High Two-Photon Efficiency for Photodynamic Therapy in Vivo. Nanoscale, 11, 3386-3395.
https://doi.org/10.1039/C9NR00004F
[28]  Wang, J. and Chen, J.Y. (2012) Synergistic Effect to Kill Cancer Cells by Gold Nanorod-Aluminum Phthalocyanine Conjugates. IEEE International Conference on Nanotechnology, Birmingham, 20-23 August 2012, 1-3.
[29]  Zhu, N., Zhu, Y., Wang, J., et al. (2019) A Novel Fluorescence Immunoassay Based on AgNCs and ALP for Ultrasensitive Detection of Sulfamethazine (SMZ) in Environmental and Biological Samples. Talanta, 199, 72-79.
https://doi.org/10.1016/j.talanta.2019.01.103

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133