全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ETFDH基因在结直肠癌中作用及机制的初步探索与论述
Initial Investigation and Dialogue on the Function and Mechanism of ETFDH Gene in CRC

DOI: 10.12677/acm.2024.1451477, PP. 681-688

Keywords: ETFDH,结直肠癌,细胞代谢,肿瘤免疫
ETFDH
, Colorectal Cancer, Cell Metabolism, Tumor Immunity

Full-Text   Cite this paper   Add to My Lib

Abstract:

电子转移黄素蛋白脱氢酶(Electron Transferring Flavoprotein Dehydrogenase, ETFDH)编码的ETF-QO蛋白是一种定位于线粒体内膜的蛋白质。它介导了从黄素蛋白脱氢酶到泛醌池的电子传输,在氧化呼吸链电子转移系统中起着重要作用。ETFDH基因突变可导致常染色体隐性遗传病——多酰基辅酶A脱氢酶缺乏症(MADD)。近年来,有研究表明ETFDH基因在多种肿瘤中也发挥重要作用,在肝癌中可作为生存期评估的独立预测因子。本综述概述了ETFDH基因在肿瘤组织中的表达特点、在肿瘤细胞代谢中的特点、在结直肠癌中的作用特点、与肿瘤免疫的相关性以及其在肿瘤预后及生存期评估中的作用。在既往研究的基础上进一步探寻ETFDH基因在结直肠癌中的生物学作用及在肿瘤免疫微环境中的作用特点,从而探寻结直肠癌治疗及预后评估的新方向。
The electron transfer flavoprotein-quinone oxidoreductase (ETF-QO), encoded by the Electron Transfer Flavoprotein Dehydrogenase (ETFDH), is a protein found in the inner mitochondrial membrane. It mediates electron transport from flavin protein dehydrogenase to ubiquinone pool and plays an important role in the electron transfer system of the oxidative respiratory chain. The mutation of the ETFDH can result in MADD, an autosomal recessive genetic disorder. Recent studies have revealed that the ETFDH gene also plays a significant role in various tumors, and can serve as an independent prognostic factor for survival in liver cancer assessments. This review provides an overview of the expression patterns of the ETFDH gene in tumor tissues, its involvement in tumor cell metabolism, its impact on colorectal cancer, its association with tumor immunity, and its contribution to tumor prognosis and survival assessment. Building upon existing research, the study delves into the ETFDH gene’s role in colorectal cancer and its influence on the tumor immune microenvironment, offering novel insights for disease management and prognosis prediction in colorectal cancer.

References

[1]  Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2]  熊玲玲, 曹艳辉. 结直肠癌病灶及癌旁组织定植菌群结构分析[J]. 医学检验与临床, 2023, 34(9): 63-65.
[3]  张雪花. CYP24A1基因多态性与结直肠息肉和结直肠癌的相关性研究[J]. 医学检验与临床, 2023, 34(2): 8-11.
[4]  Mauri, G., Bonazzina, E., Amatu, A., et al. (2021) The Evolutionary Landscape of Treatment for BRAFV600E Mutant Metastatic Colorectal Cancer. Cancers, 13, Article 137.
https://doi.org/10.3390/cancers13010137
[5]  Xue, Y., Zhou, Y., Zhang, K., et al. (2017) Compound Heterozygous Mutations in Electron Transfer Flavoprotein Dehydrogenase Identified in a Young Chinese Woman with Late-Onset Glutaric Aciduria Type I. Lipids in Health and Disease, 16, Article No. 185.
https://doi.org/10.1186/s12944-017-0576-5
[6]  Zhang, J., Frerman, F.E. and Kim, J.J.P. (2006) Structure of Electron Transfer Flavoprotein-Ubiquinone Oxidoreductase and Electron Transfer to the Mitochondrial Ubiquinone Pool. Proceedings of the National Academy of Sciences of the United States of America, 103, 16212-16217.
https://doi.org/10.1073/pnas.0604567103
[7]  Lucas, T.G., Henriques, B.J. and Gomes, C.M. (2020) Conformational Analysis of the Riboflavin-Responsive ETF: QO-P.Pro456Leu Variant Associated with Mild Multiple Acyl-CoA Dehydrogenase Deficiency. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 1868, Article ID: 140393.
https://doi.org/10.1016/j.bbapap.2020.140393
[8]  Ghisla, S. and Thorpe, C. (2004) Acyl-CoA Dehydrogenases: A Mechanistic Overview. European Journal of Biochemistry, 271, 494-508.
https://doi.org/10.1046/j.1432-1033.2003.03946.x
[9]  Frerman, F.E. (1987) Reaction of Electron-Transfer Flavoprotein Ubiquinone Oxidoreductase with the Mitochondrial Respiratory Chain. Biochimica et Biophysica Acta, 893, 161-169.
https://doi.org/10.1016/0005-2728(87)90035-1
[10]  Watmough, N.J., Bindoff, L.A., Birch-Machin, M.A., et al. (1990) Impaired Mitochondrial Beta-Oxidation in a Patient with an Abnormality of the Respiratory Chain. Studies in Skeletal Muscle Mitochondria. The Journal of Clinical Investigation, 85, 177-184.
https://doi.org/10.1172/JCI114409
[11]  Nilipour, Y., Fatehi, F., Sanatinia, S., et al.(2020) Multiple Acyl-Coenzyme a Dehydrogenase Deficiency Shows a Possible Founder Effect and Is the Most Frequent Cause of Lipid Storage Myopathy in Iran. Journal of the Neurological Sciences, 411, Article ID: 116707.
https://doi.org/10.1016/j.jns.2020.116707
[12]  Wu, Y., Zhang, X., Shen, R., et al. (2019) Expression and Significance of ETFDH in Hepatocellular Carcinoma. PathologyResearch and Practice, 215, Article ID: 152702.
https://doi.org/10.1016/j.prp.2019.152702
[13]  Deng, H., Shang, W., Wang, K., et al. (2022) Targeted-Detection and Sequential-Treatment of Small Hepatocellular Carcinoma in the Complex Liver Environment by GPC-3-Targeted Nanoparticles. Journal of Nanobiotechnology, 20, Article No. 156.
https://doi.org/10.1186/s12951-022-01378-w
[14]  Pavlova, N.N. and Thompson, C.B. (2016) The Emerging Hallmarks of Cancer Metabolism. Cell Metabolism, 23, 27-47.
https://doi.org/10.1016/j.cmet.2015.12.006
[15]  Wise, D.R., DeBerardinis, R.J., Mancuso, A., et al. (2008) Myc Regulates a Transcriptional Program That Stimulates Mitochondrial Glutaminolysis and Leads to Glutamine Addiction. Proceedings of the National Academy of Sciences of the United States of America, 105, 18782-18787.
https://doi.org/10.1073/pnas.0810199105
[16]  Goetze, K. (2011) Lactate Enhances Motility of Tumor Cells and Inhibits Monocyte Migration and Cytokine Release. International Journal of Oncology, 39, 453-463.
https://doi.org/10.3892/ijo.2011.1055
[17]  Fischer, K., Hoffmann, P., Voelkl, S., et al. (2007) Inhibitory Effect of Tumor Cell-Derived Lactic Acid on Human T Cells. Blood, 109, 3812-3819.
https://doi.org/10.1182/blood-2006-07-035972
[18]  Colegio, O.R., Chu, N.Q., Szabo, A.L., et al. (2014) Functional Polarization of Tumour-Associated Macrophages by Tumour-Derived Lactic Acid. Nature, 513, 559-563.
https://doi.org/10.1038/nature13490
[19]  Sonveaux, P., Copetti, T., De Saedeleer, C.J., et al. (2012) Targeting the Lactate Transporter MCT1 in Endothelial Cells Inhibits Lactate-Induced HIF-1 Activation and Tumor Angiogenesis. PLOS ONE, 7, e33418.
https://doi.org/10.1371/journal.pone.0033418
[20]  Végran, F., Boidot, R., Michiels, C., et al. (2011) Lactate Influx through the Endothelial Cell Monocarboxylate Transporter MCT1 Supports an NF-κB/IL-8 Pathway That Drives Tumor Angiogenesis. Cancer Research, 71, 2550-2560.
https://doi.org/10.1158/0008-5472.CAN-10-2828
[21]  Stern, R., Shuster, S., Neudecker, B.A. and Formby, B. (2002) Lactate Stimulates Fibroblast Expression of Hyaluronan and CD44: The Warburg Effect Revisited. Experimental Cell Research, 276, 24-31.
https://doi.org/10.1006/excr.2002.5508
[22]  Martinez-Zaguilhn, R., Seftort, E.A., Seftort, R.E.B., et al. (1996) Acidic PH Enhances the Invasive Behavior of Human Melanoma Cells. Clinical & Experimental Metastasis, 14, 176-186.
https://doi.org/10.1007/BF00121214
[23]  Rothberg, J.M., Bailey, K.M., Wojtkowiak, J.W., et al. (2013) Acid-Mediated Tumor Proteolysis: Contribution of Cysteine Cathepsins. Neoplasia, 15, 1125-1137, IN1-IN9.
https://doi.org/10.1593/neo.13946
[24]  Chokchaiwong, S., et al. (2019) ETF-QO Mutants Uncoupled Fatty Acid β-Oxidation and Mitochondrial Bioenergetics Leading to Lipid Pathology. Cells, 8, Article 106.
https://doi.org/10.3390/cells8020106
[25]  Yang, L.Q., Chen, M., Ren, D.L. and Hu, B. (2020) Dual Oxidase Mutant Retards Mauthner-Cell Axon Regeneration at an Early Stage via Modulating Mitochondrial Dynamics in Zebrafish. Neuroscience Bulletin, 36, 1500-1512.
https://doi.org/10.1007/s12264-020-00600-9
[26]  Brand, M.D. (2016) Mitochondrial Generation of Superoxide and Hydrogen Peroxide as the Source of Mitochondrial Redox Signaling. Free Radical Biology & Medicine, 100, 14-31.
https://doi.org/10.1016/j.freeradbiomed.2016.04.001
[27]  De Giusti, V.C., Caldiz, C.I., Ennis, I.L., et al.(2013) Mitochondrial Reactive Oxygen Species (ROS) as Signaling Molecules of Intracellular Pathways Triggered by the Cardiac Renin-Angiotensin II-Aldosterone System (RAAS). Frontiers in Physiology, 4, Article 126.
https://doi.org/10.3389/fphys.2013.00126
[28]  Kaminskyy, V.O. and Zhivotovsky, B. (2014) Free Radicals in Cross Talk between Autophagy and Apoptosis. Antioxidants & Redox Signaling, 21, 86-102.
https://doi.org/10.1089/ars.2013.5746
[29]  Galon, J., Costes, A., Sanchez-Cabo, F., et al. (2006) Type, Density, and Location of Immune Cells within Human Colorectal Tumors Predict Clinical Outcome. Science, 313, 1960-1964.
https://doi.org/10.1126/science.1129139
[30]  Deschoolmeester, V., Baay, M., Lardon, F., et al. (2011) Immune Cells in Colorectal Cancer: Prognostic Relevance and Role of MSI. Cancer Microenvironment, 4, 377-392.
https://doi.org/10.1007/s12307-011-0068-5
[31]  Sautès-Fridman, C., Lawand, M., Giraldo, N.A., et al. (2016) Tertiary Lymphoid Structures in Cancers: Prognostic Value, Regulation, and Manipulation for Therapeutic Intervention. Frontiers in Immunology, 7, 407-418.
https://doi.org/10.3389/fimmu.2016.00407
[32]  Galon, J., Mlecnik, B., Bindea, G., et al. (2014) Towards the Introduction of the “Immunoscore” in the Classification of Malignant Tumours. The Journal of Pathology, 232, 199-209.
https://doi.org/10.1002/path.4287
[33]  Locati, M., Curtale, G. and Mantovani, A. (2020) Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annual Review of Pathology: Mechanisms of Disease, 15, 123-147.
https://doi.org/10.1146/annurev-pathmechdis-012418-012718
[34]  Isidro, R.A. and Appleyard, C.B. (2016) Colonic Macrophage Polarization in Homeostasis, Inflammation, and Cancer. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311, G59-G73.
https://doi.org/10.1152/ajpgi.00123.2016
[35]  Najafi, M., Hashemi, Goradel, N., Farhood, B., et al. (2019) Macrophage Polarity in Cancer: A Review. Journal of Cellular Biochemistry, 120, 2756-2765.
https://doi.org/10.1002/jcb.27646
[36]  Mlecnik, B., Van Den Eynde, M., Bindea, G., et al. (2018) Comprehensive Intrametastatic Immune Quantification and Major Impact of Immunoscore on Survival. JNCI: Journal of the National Cancer Institute, 110, 97-108.
https://doi.org/10.1093/jnci/djx123
[37]  O’Malley, G., Treacy, O., Lynch, K., et al. (2018) Stromal Cell PD-L1 Inhibits CD8 T-Cell Antitumor Immune Responses and Promotes Colon Cancer. Cancer Immunology Research, 6, 1426-1441.
https://doi.org/10.1158/2326-6066.CIR-17-0443
[38]  Olesch, C., Sirait-Fischer, E., Berkefeld, M., et al. (2020) S1PR4 Ablation Reduces Tumor Growth and Improves Chemotherapy via CD8 T Cell Expansion. Journal of Clinical Investigation, 130, 5461-5476.
https://doi.org/10.1172/JCI136928
[39]  Mizuno, R., Kawada, K., Itatani, Y., et al. (2019) The Role of Tumor-Associated Neutrophils in Colorectal Cancer. International Journal of Molecular Sciences, 20, Article 529.
https://doi.org/10.3390/ijms20030529
[40]  崔忠泽, 何双, 等. 基于生物信息学分析筛选结肠癌关键基因[J]. 医学信息, 2022, 35(10): 1-7.
[41]  Mosegaard, S., Dipace, G., Bross, P., et al. (2020) Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. International Journal of Molecular Sciences, 21, Article 3847.
https://doi.org/10.3390/ijms21113847
[42]  Henriques, B.J., Katrine Jentoft Olsen, R., Gomes, C.M. and Bross, P. (2021) Electron Transfer Flavoprotein and Its Role in Mitochondrial Energy Metabolism in Health and Disease. Gene, 776, Article ID: 145407.
https://doi.org/10.1016/j.gene.2021.145407
[43]  Tummolo, A., Leone, P., Tolomeo, M., et al. (2022) Combined Isobutyryl-CoA and Multiple Acyl-CoA Dehydrogenase Deficiency in a Boy with Altered Riboflavin Homeostasis. JIMD Reports, 63, 276-291.
https://doi.org/10.1002/jmd2.12292

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133