全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于RhB@ZIF-8比率型荧光传感器的制备及其在环境检测方面的应用研究
Preparation of Ratio Fluorescence Sensor Based on RhB@ZIF-8 and Its Application in Environmental Detection

DOI: 10.12677/hjcet.2024.143017, PP. 147-156

Keywords: ZIF-8,主–客体复合,配位螯合,分子内氢键,抗生素检测
ZIF-8
, Host-Object Composite, Coordination Chelation, Intramolecular Hydrogen Bond, Antibiotic Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过一种在MOF晶体形成过程中将染料封装的方法,合成了一种单波长下单发射的比率荧光材料RhB@ZIF-8。基于RhB@ZIF-8构建的荧光传感器能够对盐酸多西环素(Dox)快速响应,检测限低至0.026 μM。将该方法应用到实际样品中Dox的测定,加标回收率在91%~103%范围内,相对标准偏差为0.59%~1.34%。此外,利用RhB@ZIF-8制备的荧光传感试纸,对实际样品中Dox的检测适用性良好。该传感器具有操作简单、灵敏度高、选择性好、可视化检测等优点,有望实现对实际环境中Dox的快速目视化检测。
In this work, dyes were easily encapsulated during the production of MOF crystals to create the single wavelength, single emission ratio fluorescent material RhB@ZIF-8. The fluorescence sensor based on RhB@ZIF-8 can respond quickly to doxycycline hydrochloride (Dox) with a detection limit as low as 0.026 μM. The technique was applied to the determination of Dox in real samples and the relative standard deviations were 0.59%~1.34%, and the recoveries ranged from 91% to 103%. Furthermore, there is good applicability of the fluorescence sensing paper made by RhB@ZIF-8 for the detection of Dox in real samples. The sensor has the advantages of simple operation, high sensitivity, good selectivity, visual detection, etc., and is expected to achieve rapid visual detection of Dox in the actual environment.

References

[1]  Marimuthu, M., Arumugam, S.S., Sabarinathan, D., et al. (2021) Metal Organic Framework Based Fluorescence Sensor for Detection of Antibiotics. Trends in Food Science & Technology, 116, 1002-1028.
https://doi.org/10.1016/j.tifs.2021.08.022
[2]  Singh, H., Thakur, B., Bhardwaj, S.K., et al. (2023) Nanomaterial-Based Fluorescent Biosensors for the Detection of Antibiotics in Foodstuffs: A Review. Food Chemistry, 426, Article 136657.
https://doi.org/10.1016/j.foodchem.2023.136657
[3]  Wei, L., Zhu, D., Cheng, Q., et al. (2024) Aptamer-Based Fluorescent DNA Biosensor in Antibiotics Detection. Food Research International, 179, Article 114005.
https://doi.org/10.1016/j.foodres.2024.114005
[4]  Pawar, M.K., Tayade, K.C., Sahoo, S.K., et al. (2016) Selective Ciprofloxacin Antibiotic Detection by Fluorescent Siderophore Pyoverdin. Biosensors and Bioelectronics, 81, 274-279.
https://doi.org/10.1016/j.bios.2016.03.003
[5]  Zhang, Y., Liao, T., Wang, G., et al. (2022) An Ultrasensitive NIR-IIa’ Fluorescence-Based Multiplex Immunochromatographic Strip Test Platform for Antibiotic Residues Detection in Milk Samples. Journal of Advanced Research, 50, 25-34.
https://doi.org/10.1016/j.jare.2022.10.008
[6]  Verma, T., Verma, P. and Singh, U.P. (2023) A Multi Responsive Phosphonic Acid Based Fluorescent Sensor for Sensing Fe3 , Benzaldehyde and Antibiotics. Microchemical Journal, 191, Article 108771.
https://doi.org/10.1016/j.microc.2023.108771
[7]  Leng, F., Zhao, X., Wang, J., et al. (2013) Visual Detection of Tetracycline Antibiotics with the Turned on Fluorescence Induced by a Metal-Organic Coordination Polymer. Talanta, 107, 396-401.
https://doi.org/10.1016/j.talanta.2013.01.039
[8]  Xu, W., Ahmed, W., Mahmood, M., et al. (2023) Physiological and Biochemical Responses of Soft Coral Sarcophyton trocheliophorum to Doxycycline Hydrochloride Exposure. Scientific Reports, 13, Article No. 17665.
https://doi.org/10.1038/s41598-023-44383-1
[9]  Zhang, J., Zhao, Y., Yang, M., et al. (2022) Efficient Electrocatalytic Degradation of Doxycycline Hydrochloride in Wastewater by Ni/MWCNTs-OH on Modified Ti. Journal of Water Process Engineering, 50, Article 103187.
https://doi.org/10.1016/j.jwpe.2022.103187
[10]  Raykova, M.R., McGuire, K., Peveler, W.J., et al. (2023) Towards Direct Detection of Tetracycline Residues in Milk with a Gold Nanostructured Electrode. PLOS ONE, 18, e0287824.
https://doi.org/10.1371/journal.pone.0287824
[11]  Gab-Allah, M.A., Lijalem, Y.G., Yu, H., et al. (2023) Accurate Determination of Four Tetracycline Residues in Chicken Meat by Isotope Dilution-Liquid Chromatography/Tandem Mass Spectrometry. Journal of Chromatography A, 1691, Article 463818.
https://doi.org/10.1016/j.chroma.2023.463818
[12]  Guo, Y., Shi, J., Wei, C., et al. (2023) One-Pot Synthesis of Fluorescent Aminoclay and the Ratiometric Fluorescence Detection of Sunset Yellow. Dyes and Pigments, 212, Article 111102.
https://doi.org/10.1016/j.dyepig.2023.111102
[13]  Li, B., Qi, J., Liu, F., et al. (2023) Molecular Imprinting-Based Indirect Fluorescence Detection Strategy Implemented on Paper Chip for Non-Fluorescent Microcystin. Nature Communications, 14, Article No. 6553.
https://doi.org/10.1038/s41467-023-42244-z
[14]  Xu, W., Hao, X., Li, T., et al. (2021) Dual-Mode Fluorescence and Visual Fluorescent Test Paper Detection of Copper Ions and EDTA. ACS Omega, 6, 29157-29165.
https://doi.org/10.1021/acsomega.1c04406
[15]  Zhang, C., Li, M., Chen, Y., et al. (2022) Ratiometric Fluorescent Sensor Based on Tb(III) Functionalized Metal-Organic Framework for Formic Acid. Molecules, 27, Article 8702.
https://doi.org/10.3390/molecules27248702
[16]  Hitabatuma, A., Wang, P., Ma, M., et al. (2023) Determination of Citrinin with a Stable Fluorescent Zirconium(IV)-Based Metal-Organic Framework. Chemical Papers, 77, 2957-2966.
https://doi.org/10.1007/s11696-023-02679-6
[17]  Du, Q., Guo, W., Shi, Y., et al. (2023) Boric Acid-Functionalized Lanthanide Metal-Organic Framework Used as a Ratiometric Fluorescence Probe for Uric Acid Detection. Microchemical Journal, 193, Article 109161.
https://doi.org/10.1016/j.microc.2023.109161
[18]  Zuo, Y.-N., Zhao, X.-E., Xia, Y., et al. (2022) Ratiometric Fluorescence Sensing of Formaldehyde in Food Samples Based on Bifunctional MOF. Microchimica Acta, 190, Article No. 36.
https://doi.org/10.1007/s00604-022-05607-9
[19]  Yang, H.-W., Xu, P., Wang, X.-G., et al. (2019) A Highly Stable (4, 8)-Connected Tb-MOF Exhibiting Efficiently Luminescent Sensing towards Nitroimidazole Antibiotics. Zeitschrift für Anorganische und Allgemeine Chemie, 646, 23-29.
https://doi.org/10.1002/zaac.201900271
[20]  Yang, W., Kong, Y., Yin, H., et al. (2023) Study on the Adsorption Performance of ZIF-8 on Heavy Metal Ions in Water and the Recycling of Waste ZIF-8 in Cement. Journal of Solid State Chemistry, 326, Article 124217.
https://doi.org/10.1016/j.jssc.2023.124217
[21]  Liang, Q., Chen, J., Wang, F., et al. (2020) Transition Metal-Based Metal-Organic Frameworks for Oxygen Evolution Reaction. Coordination Chemistry Reviews, 424, Article 213488.
https://doi.org/10.1016/j.ccr.2020.213488
[22]  Lee, Y., Jang, M., Cho, H., et al. (2015) ZIF-8: A Comparison of Synthesis Methods. Chemical Engineering Journal, 271, 276-280.
https://doi.org/10.1016/j.cej.2015.02.094
[23]  Liu, X., Xing, K., Li, Y., et al. (2019) Three Models to Encapsulate Multi-Component Dyes into Nanocrystal Pores: A New Strategy for Generating High Quality White Light. Journal of the American Chemical Society, 141, 14807-14813.
https://doi.org/10.1021/jacs.9b07236
[24]  Wang, X. and Wang, X. (2022) UiO-66-NH2 Based Fluorescent Sensing for Detection of Tetracyclines in Milk. RSC Advances, 12, 23427-23436.
https://doi.org/10.1039/D2RA04023A
[25]  Meng, L., Lan, C., Liu, Z., et al. (2019) A Novel Ratiometric Fluorescence Probe for Highly Sensitive and Specific Detection of Chlorotetracycline among Tetracycline Antibiotics. Analytica Chimica Acta, 1089, 144-151.
https://doi.org/10.1016/j.aca.2019.08.065
[26]  Liu, J., Wang, T., Wang, Z., et al. (2021) Ratiometric Fluorescent Probe for Tetracycline Detection Based on Waste Printing Paper. Luminescence, 36, 1553-1560.
https://doi.org/10.1002/bio.4100
[27]  Xing, B., Liu, B., Luo, G., et al. (2023) A Europium Metal-Organic Framework and Its Polymer Composite Membrane as Switch-off Fluorescence Sensors for Antibiotic Detection in Lake Water. Inorganic Chemistry, 62, 21277-21289.
https://doi.org/10.1021/acs.inorgchem.3c03389

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133