全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

冷冻保护剂对克氏原螯虾品质的影响研究
Study on the Effect of Cryoprotectant on the Quality of Crayfish

DOI: 10.12677/hjfns.2024.132024, PP. 191-199

Keywords: 克氏原螯虾,冷冻,保护剂,品质
Crayfish
, Freezing, Cryoprotectant, Quality

Full-Text   Cite this paper   Add to My Lib

Abstract:

克氏原螯虾是我国重要的淡水水产资源,其水分和蛋白质含量高,因此极易受微生物感染而腐烂变质,严重影响其品质。冷冻技术是一项传统的保鲜技术,但冷冻会对克氏原螯虾品质造成不可逆转的伤害。添加冷冻保护剂是有效缓解水产品在冷冻保藏过程中品质劣变的方法之一。本文简述了克氏原螯虾的保鲜技术及近年来应用较广的冷冻保护剂,指出了冷冻保护剂在水产品加工领域的应用并进行展望,旨在为冷冻水产品保鲜提供相应的理论依据。
Crayfish is an important freshwater aquatic resource in China, with high water and protein content, so it is very susceptible to microbial infection and decay, which seriously affects its quality. Freezing technology is a traditional preservation technology, but freezing will cause irreversible damage to the quality of crayfish. The addition of cryoprotectants is one of the effective ways to alleviate the quality deterioration of aquatic products in the process of freezing and preservation. In this paper, the preservation technology of crayfish and the cryoprotectants widely used in recent years are briefly described, and the application of cryoprotectants in the field of aquatic product processing is pointed out and prospected, aiming to provide a corresponding theoretical basis for the preservation of frozen aquatic products.

References

[1]  高晓光, 吕蒙, 臧芳波, 等. 小龙虾加工与保鲜技术研究进展[J]. 保鲜与加工, 2021, 21(12): 126-131, 139.
[2]  王芳, 周国燕. 甲壳类水产品变质问题和低温保鲜及其辅助技术的研究进展[J]. 食品与发酵科技, 2021, 57(4): 106-112, 121.
[3]  Shi, L., Xiong, G., Ding, A., et al. (2018) Effects of Freezing Temperature and Frozen Storage on the Biochemical and Physical Properties of Procambarus clarkii. International Journal of Refrigeration, 91, 223-229.
https://doi.org/10.1016/j.ijrefrig.2018.04.027
[4]  贾世亮, 丁娇娇, 杨月, 等. 水产品速冻保鲜技术研究进展[J]. 食品与发酵工业, 2021, 48(11): 324-331.
[5]  Qi, X., Yin, M., Qiao, Z., et al. (2022) Freezing and Frozen Storage of Aquatic Products: Mechanism and Regulation of Protein Oxidation. Food Science and Technology, 42, e91822.
https://doi.org/10.1590/fst.91822
[6]  Abdelnaby, T., Li, Z., Cao, W. and Xue, C.H. (2023) The Effect of Gamma-Poly Glutamic Acid as a Cryoprotectant on Crayfish Physicochemical and Texture Properties during Frozen Storage. Food Science and Technology, 184, Article ID: 114905.
https://doi.org/10.1016/j.lwt.2023.114905
[7]  Walayat, N., Wang, X., Liu, J., et al. (2022) Kappa-Carrageenan as an Effective Cryoprotectant on Water Mobility and Functional Properties of Grass Carp Myofibrillar Protein Gel during Frozen Storage. Food Science and Technology, 154, Article ID: 112675.
https://doi.org/10.1016/j.lwt.2021.112675
[8]  蔡路昀, 台瑞瑞, 曹爱玲, 等. 冷冻因素对水产品品质的影响及冷冻保鲜的研究进展[J]. 食品工业科技, 2018, 39(20): 308-313, 319.
[9]  Mulot, V., Fatou-Toutie, N., Benkhelifa, H., et al. (2019) Investigating the Effect of Freezing Operating Conditions on Microstructure of Frozen Minced Beef Using an Innovative X-Ray Micro-Computed Tomography Method. Journal of Food Engineering, 262, 13-21.
https://doi.org/10.1016/j.jfoodeng.2019.05.014
[10]  Sun, Q., Zhao, X., Zhang, C., et al. (2019) Ultrasound-Assisted Immersion Freezing Accelerates the Freezing Process and Improves the Quality of Common Carp (Cyprinus carpio) at Different Power Levels. Food Science and Technology, 108, 106-112.
https://doi.org/10.1016/j.lwt.2019.03.042
[11]  Li, D., Zhu, Z. and Sun, D.W. (2018) Effects of Freezing on Cell Structure of Fresh Cellular Food Materials: A Review. Trends in Food Science & Technology, 5, 46-55.
https://doi.org/10.1016/j.tifs.2018.02.019
[12]  殷磊. 即食干制对虾加工工艺及货架期预测[D]: [硕士学位论文]. 保定: 河北农业大学, 2018.
[13]  黄鸿兵, 于波, 王冬蕾, 等. 克氏原螯虾养殖业现状及其系统工程化展望[J]. 水产养殖, 2021, 42(12): 68-71.
[14]  石玉, 冯光志, 何立超. 克氏原螯虾肠道菌群的结构?功能及其影响因素[J]. 中国酿造, 2023, 42(11): 28-33.
[15]  郑静静. 冷冻加工对小龙虾品质影响的研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2020.
[16]  Wang, J., Tang, J., Rasco, B., et al. (2018) Kinetics of Quality Changes of Shrimp (Litopenaeus setiferus) during Pasteurization. Food and Bioprocess Technology, 11, 1027-1038.
https://doi.org/10.1007/s11947-018-2073-x
[17]  Gao, W., Hou, R. and Zeng, X.A. (2018) Synergistic Effects of Ultrasound and Soluble Soybean Polysaccharide on Frozen Surimi from Grass Carp. Journal of Food Engineering, 240, 1-8.
https://doi.org/10.1016/j.jfoodeng.2018.07.003
[18]  赵立, 陈军, 邵兴锋, 等. 冷冻方式对熟制克氏原螯虾虾肉冷冻贮藏(?18?C)条件下品质的影响[J]. 江苏农业科学, 2012, 40(10): 232-234.
[19]  崔自成, 黄东, 赵日晶, 等. 水产品冷冻品质影响因素[J]. 食品工程, 2022(1): 12-15.
[20]  Zhao, L., Chen, J., Zhao, X.R., et al. (2014) Effects of Different Freezing Rates on the Quality Changes in Cooked Crayfish (Procambarus clarkia) Meat during Frozen Storage (?20?C). Advanced Materials Research, 1033-1034, 673-676.
https://doi.org/10.4028/www.scientific.net/AMR.1033-1034.673
[21]  谢晶, 谭明堂, 范敏浩. 冰晶的形成和影响因素及其对水产品品质的影响[J]. 粮食与油脂, 2023, 36(9): 1-6.
[22]  Xie, Y., Zhou, K., Chen, B., et al. (2021) Applying Low Voltage Electrostatic Field in the Freezing Process of Beef Steak Reduced the Loss of Juiciness and Textural Properties. Innovative Food Science & Emerging Technologies, 68, Article ID: 102600.
https://doi.org/10.1016/j.ifset.2021.102600
[23]  Cheng, L., Sun, D.W., Zhu, Z. and Zhang, Z. (2017) Emerging Techniques for Assisting and Accelerating Food Freezing Processes: A Review of Recent Research Progresses. Critical Reviews in Food Science and Nutrition, 57, 769-781.
https://doi.org/10.1080/10408398.2015.1004569
[24]  Ehsani, A. and Jasour, M.S. (2014) Safety Assessment of Crayfish (Astacus leptodactylus ESCH., 1823) from Microbial Load and Biogenic Amines Signature: Impact of Post-Catch Icing and Frozen Storage. International Journal of Food Properties, 17, 1714-1725.
https://doi.org/10.1080/10942912.2012.703276
[25]  李敏涵, 李洪军, 李少博, 等. 抗冻保护剂在肉品及水产品贮藏保鲜中的应用研究进展[J]. 食品科学, 2021, 42(1): 294-301.
[26]  Yamazaki, A., Nishimiya, Y., Tsuda, S., et al. (2018) Gene Expression of Antifreeze Protein in Relation to Historical Distributions of Myoxocephalus Fish Species. Marine Biology, 165, Article No. 181.
https://doi.org/10.1007/s00227-018-3440-x
[27]  Liu, Z., Yang, W., Wei, H., et al. (2023) The Mechanisms and Applications of Cryoprotectants in Aquatic Products: An Overview. Food Chemistry, 408, Article ID: 135202.
https://doi.org/10.1016/j.foodchem.2022.135202
[28]  Parvathy, U. and George, S. (2014) Influence of Cryoprotectant Levels on Storage Stability of Surimi from Nemipterus japonicus and Quality of Surimi-Based Products. Journal of Food Science and Technology, 51, 982-987.
https://doi.org/10.1007/s13197-011-0590-y
[29]  Rawdkuen, S., Jongjareonrak, A., Phatcharat, S., et al. (2010) Assessment of Protein Changes in Farmed Giant Catfish (Pangasianodon gigas) Muscles during Refrigerated Storage. International Journal of Food Science & Technology, 45, 985-994.
https://doi.org/10.1111/j.1365-2621.2010.02217.x
[30]  Macdonald, G.A. and Lanier, T.C. (1991) Carbohydrates as Cryoprotectants for Meats and Surimi. Food Technology, 45, 150-159.
[31]  Curry, M.R., Watson, P.F., Carpenter, J.F., et al. (1987). Stabilization of Dry Phospholipid Bilayers and Protein by Sugars. Biochemistry, 242, 1-10.
https://doi.org/10.1042/bj2420001
[32]  汪兰, 吴文锦, 乔宇, 等. 冻藏条件下魔芋葡甘聚糖降解产物对肌原纤维蛋白结构的影响[J]. 食品科学, 2015, 36(22): 244-249.
[33]  Donald, G.A.M. and Lanier, T.C. (1994) Actomyosin Stabilization to Freeze Thaw and Heat Denaturation by Lactate Salts. Food Science, 59, 101-105.
https://doi.org/10.1111/j.1365-2621.1994.tb06907.x
[34]  尚珊, 于书蕾, 臧梁, 等. 海藻糖和卡拉胶寡糖对冷冻面团冻藏稳定性和烘焙特性的影响[J]. 食品与发酵工业, 2023, 49(11): 207-216.
[35]  Wang, Q., Zhou, C., Xia, Q., et al. (2024) PH Sensitive Cold-Set Hydrogels Based on Fibrinogen Hydrolysates/Carrageenan: Insights of Rheology, Coacervation, Microstructure and Antioxidant Ability. Food Hydrocolloids, 147, Article ID: 109377
https://doi.org/10.1016/j.foodhyd.2023.109377
[36]  Liao, E., Wu, Y., Pan, Y., et al. (2023) Cryoprotective Effects of Carrageenan Oligosaccharides on Crayfish (Procambarus clarkii) during Superchilling. Foods, 12, Article 2258.
https://doi.org/10.3390/foods12112258
[37]  Shui, S., Qi, H., Shaimaa, H., et al. (2021) Kappa-Carrageenan and Its Oligosaccharides Maintain the Physicochemical Properties of Myofibrillar Proteins in Shrimp Mud (Xia-Hua) during Frozen Storage. Journal of Food Science, 86, 140-148.
https://doi.org/10.1111/1750-3841.15547
[38]  Kilinc, B., Cakli, S., Dincer, T. and Cadun, A. (2009) Effects of Phosphates Treatment on the Quality of Frozen-Thawed Fish Species. Journal of Muscle Foods, 20, 377-391.
https://doi.org/10.1111/j.1745-4573.2009.00154.x
[39]  连战, 王松江, 郭传庄, 等. 海藻糖与赤藓糖醇偶联发酵工艺研究[J]. 中国食品添加剂, 2023, 34(12): 147-153.
[40]  蒙健宗, 秦小明, 赵文报, 等. 海藻糖对冷冻罗非鱼片蛋白质变性作用的影响[J]. 食品工业科技, 2007(2): 214-216.
[41]  Hajji, S., Hamdi, M., Boufi, S., et al. (2019) Suitability of Chitosan Nanoparticles as Cryoprotectant on Shelf Life of Restructured Fish Surimi during Chilled Storage. Cellulose, 26, 6825-6847.
https://doi.org/10.1007/s10570-019-02555-1
[42]  Zhang, B., Yao, H., Qi, H., et al. (2020) Cryoprotective Characteristics of Different Sugar Alcohols on Peeled Pacific White Shrimp (Litopenaeus vannamei) during Frozen Storage and Their Possible Mechanisms of Action. International Journal of Food Properties, 23, 95-107.
https://doi.org/10.1080/10942912.2019.1710533
[43]  吕卫金, 赵进, 汪金林, 等. 茶多酚延缓冷藏大黄鱼肌原纤维蛋白变性降解机理研究[J]. 中国食品学报, 2014, 14(1): 60-67.
[44]  梁慧, 于立梅, 陈秀兰, 等. 多酚对鸡肉氧化脂肪诱导蛋白质变性的影响[J]. 食品与发酵工业, 2016, 42(5): 146-151.
[45]  Albuquerque, D.C.T.S., Lima, L.E.S., Silva, D.C.V.F., et al. (2022) Oxidative Stability of Green Weakfish (Cynoscion virescens) By-Product Surimi and Surimi Gel Enhanced with a Spondias mombin L. Waste Phenolic-Rich Extract during Cold Storage. Food Bioscience, 50, Article ID: 102021.
https://doi.org/10.1016/j.fbio.2022.102021
[46]  Zhang, Y., Yu, Q., Liu, Y., et al. (2023) Dual Cryoprotective and Antioxidant Effects of Young Apple Polyphenols on Myofibrillar Protein Degradation and Gelation Properties of Bighead Carp Mince during Frozen Storage. Journal of Food Science, 88, 4560-4573.
https://doi.org/10.1111/1750-3841.16781
[47]  张静雅. 白鲢鱼糜蛋白的冷冻变性机理及抗冻剂的应用研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2012.
[48]  Tao, L., Tian, L., Zhang, X., et al. (2020) Effects of γ-Polyglutamic Acid on the Physicochemical Properties and Microstructure of Grass Carp (Ctenopharyngodon idellus) Surimi during Frozen Storage. Food Science and Technology, 134, Article ID: 109960.
https://doi.org/10.1016/j.lwt.2020.109960
[49]  Xu, Z., Zhu, Z., Tu, M., et al. (2023) Characterizations and the Mechanism Underlying Cryoprotective Activity of Peptides from Enzymatic Hydrolysates of Pseudosciaena crocea. Foods, 12, Article 875.
https://doi.org/10.3390/foods12040875
[50]  Wu, J,H., Rong, Y,Z., Wang, Z,W., et al. (2015) Isolation and Characterisation of Sericin Antifreeze Peptides and Molecular Dynamics Modelling of Their Ice-Binding Interaction. Food Chemistry, 174, 621-629.
https://doi.org/10.1016/j.foodchem.2014.11.100
[51]  潘海博, 覃璐琪, 黄燕婷, 等. 人工神经网络结合遗传算法优化保护剂提高罗伊氏乳杆菌抗冻性能[J]. 食品科学, 2021, 42(14): 70-77.
[52]  Cao, H., Zhao, Y., Zhu, Y, B., et al. (2016) Antifreeze and Cryoprotective Activities of Ice-Binding Collagen Peptides from Pig Skin. Food Chemistry, 194, 1245-1253.
https://doi.org/10.1016/j.foodchem.2015.08.102
[53]  Dang, M.Z., Wang, R.F., Jia, Y.Y., et al. (2020) The Antifreeze and Cryoprotective Activities of a Novel Antifreeze Peptide from Ctenopharyngodon idella Scales. Foods, 11, Article 1830.
https://doi.org/10.3390/foods11131830
[54]  Yasemi, M. (2017) Prevention of Denaturation of Freshwater Crayfish Muscle Subjected to Different Freeze-Thaw Cycles by Gelatin Hydrolysate. Food Chemistry, 234, 199-204.
https://doi.org/10.1016/j.foodchem.2017.04.183

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133