全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Docking Studies on Streptomycin Antileishmanial Activity

DOI: 10.4236/ojpc.2024.142003, PP. 36-48

Keywords: Leishmaniasis, Streptomycin, Amphotericin B, Molecular Docking, Aminoglycosides, Antileishmanial

Full-Text   Cite this paper   Add to My Lib

Abstract:

Resistance to pentavalent antimonial drugs and the lack of vaccines make it urgent to find novel therapeutic options to treat Leishmaniasis, a tropical disease caused by the Leishmania protozoan parasite. The study reported here is to investigate if Streptomycin, an aminoglycoside, and Amphotericin B, the second-line treatment drug, exhibit antileishmanial activity through a similar mechanism. By using MOE (Molecular Operating Environment), we performed molecular docking studies on these drugs binding to a range of targets including ribosome targets in Leishmania and H. sapiens. Our study shows that the two drugs do not bind to the same pockets in Leishmania targets but to the same pockets in the human ribosome, with some differences in interactions. Moreover, our 2D maps indicated that Amphotericin B binds to the A-site in the human cytoplasmic ribosome, whereas streptomycin does not.

References

[1]  Mann, S., Frasca, K., Scherrer, S., Henao-Martínez, A.F., Newman, S., Ramanan, P. and Suarez, J.A. (2021) A Review of Leishmaniasis: Current Knowledge and Future Directions. Current Tropical Medicine Reports, 8, 121-132.
https://doi.org/10.1007/s40475-021-00232-7
[2]  CDC (2020) About Leishamiansis.
https://cdc.gov/parasites/leishmaniasis/gen_info/faqs.html
[3]  Knight, C.A., Harris, D.R., Alshammari, S.O., Gugssa, A., Young, T.A. and Lee, C.M. (2023) Leishmaniasis: Recent Epidemiological Studies in the Middle East. Frontiers in Microbiology, 13, Article 1052478.
https://doi.org/10.3389/fmicb.2022.1052478
[4]  Lockard, R.D., Wilson, M.E. and Rodríguez, N.E. (2019) Sex-Related Differences in Immune Response and Symptomatic Manifestations to Infection with Leishmania Species. Journal of Immunology Research, 2019, Article ID: 4103819.
https://doi.org/10.1155/2019/4103819
[5]  Jamal, Q., Shah, A., Rasheed, S.B. and Adnan, M. (2020) In vitro Assessment and Characterization of the Growth and Life Cycle of Leishmania tropica. Pakistan Journal of Zoology, 52, 447-455.
https://doi.org/10.17582/journal.pjz/20180718100758
[6]  Costa-Da-Silva, A.C., Nascimento, D.D.O., Ferreira, J.R., Guimarães-Pinto, K., Freire-De-Lima, L., Morrot, A., Freire-De-Lima, C.G., et al. (2022) Immune Responses in Leishmaniasis: An Overview. Tropical Medicine and Infectious Disease, 7, Article 54.
https://doi.org/10.3390/tropicalmed7040054
[7]  Ollech, A., Solomon, M., Horev, A., Reiss-Huss, S., Dan, B.A., Zvulunov, A., Greenberger, S., et al. (2020) Cutaneous Leishmaniasis Treated with Miltefosine: A Case Series of 10 Paediatric Patients. Acta Dermato-Venereologica, 100, 1-5.
https://doi.org/10.2340/00015555-3669
[8]  Kumari, S., Kumar, V., Tiwari, R.K., Ravidas, V., Pandey, K. and Kumar, A. (2022) Amphotericin B: A Drug of Choice for Visceral Leishmaniasis. Acta Tropica, 235, Article 106661.
https://doi.org/10.1016/j.actatropica.2022.106661
[9]  Roatt, B.M., De Oliveira Cardoso, J.M., De Brito, R.C.F., Coura-Vital, W., De Oliveira Aguiar-Soares, R.D. and Reis, A.B. (2020) Recent Advances and New Strategies on Leishmaniasis Treatment. Applied Microbiology and Biotechnology, 104, 8965-8977.
https://doi.org/10.1007/s00253-020-10856-w
[10]  Shalev-Benami, M., Zhang, Y., Rozenberg, H., Nobe, Y., Taoka, M., Matzov, D., et al. (2017) Atomic Resolution Snapshot of Leishmania ribosome Inhibition by the Aminoglycoside Paromomycin. Nature Communications, 8, Article 1589.
https://doi.org/10.1038/s41467-017-01664-4
[11]  Matos, A.P.S., Viçosa, A.L., Ré, M.I., Ricci-Júnior, E. and Holandino, C. (2020) A Review of Current Treatments Strategies Based on Paromomycin for Leishmaniasis. Journal of Drug Delivery Science and Technology, 57, Article 101664.
https://doi.org/10.1016/j.jddst.2020.101664
[12]  Croft, S.L. and Coombs, G.H. (2003) Leishmaniasis—Current Chemotherapy and Recent Advances in the Search for Novel Drugs. Trends in Parasitology, 19, 502-508.
https://doi.org/10.1016/j.pt.2003.09.008
[13]  Mukherjee, B., Mukherjee, K., Nanda, P., Mukhopadhayay, R., Ravichandiran, V., Bhattacharyya, S.N. and Roy, S. (2021) Probing the Molecular Mechanism of Aggressive Infection by Antimony Resistant Leishmania donovani. Cytokine, 145, Article 155245.
https://doi.org/10.1016/j.cyto.2020.155245
[14]  Yan, C., Lin, Q., Su, B., Su, X., Su, H. and Mo, L. (2022) Analysis and Management of Adverse Drug Reactions after Injection of Amphotericin B in AIDS Patients with Fungal Infection. Natural Science, 14, 62-70.
https://doi.org/10.4236/ns.2022.142007
[15]  Ubals, M., Bosch-Nicolau, P., Sánchez-Montalvá, A., Salvador, F., Aparicio-Español, G., Sulleiro, E., García-Patos, V., et al. (2021) Treatment of Complex Cutaneous Leishmaniasis with Liposomal Amphotericin B. Pathogens, 10, Article 1253.
https://doi.org/10.3390/pathogens10101253
[16]  Pokharel, P., Ghimire, R. and Lamichhane, P. (2021) Efficacy and Safety of Paromomycin for Visceral Leishmaniasis: A Systematic Review. Journal of Tropical Medicine, 2021, Article ID: 8629039.
https://doi.org/10.1155/2021/8629039
[17]  Abdellahi, L., Iraji, F., Mahmoudabadi, A. and Hejazi, S.H. (2022) Vaccination in Leishmaniasis: A Review Article. Iranian Biomedical Journal, 26, 1-35.
[18]  Kaye, P.M., Mohan, S., Mantel, C., Malhame, M., Revill, P., Le Rutte, E., Malvolti, S., et al. (2021) Overcoming Roadblocks in the Development of Vaccines for Leishmaniasis. Expert Review of Vaccines, 20, 1419-1430.
https://doi.org/10.1080/14760584.2021.1990043
[19]  Orabi, M.A.A., Lahiq, A.A., Awadh, A.A.A., Alshahrani, M.M., Abdel-Wahab, B.A. and Abdel-Sattar, E.S. (2023) Alternative Non-Drug Treatment Options of the Most Neglected Parasitic Disease Cutaneous Leishmaniasis: A Narrative Review. Tropical Medicine and Infectious Disease, 8, Article 275.
https://doi.org/10.3390/tropicalmed8050275
[20]  Reithinger, R., Dujardin, J.C., Louzir, H., Pirmez, C., Alexander, B. and Brooker, S. (2007) Cutaneous Leishmaniasis. The Lancet Infectious Diseases, 7, 581-596.
https://doi.org/10.1016/S1473-3099(07)70209-8
[21]  Kumar, S., Srivastava, A. and Maity, R. (2024) Modeling Climate Change Impacts on Vector-Borne Disease Using Machine Learning Models: Case Study of Visceral leishmaniasis (Kala-Azar) from Indian State of Bihar. Expert Systems with Applications, 237, Article 121490.
https://doi.org/10.1016/j.eswa.2023.121490
[22]  Trájer, A.J. (2021) The Potential Impact of Climate Change on the Seasonality of Phlebotomus neglectus, the Vector of Visceral Leishmaniasis in the East Mediterranean Region. International Journal of Environmental Health Research, 31, 932-950.
https://doi.org/10.1080/09603123.2019.1702150
[23]  Krassner, S.M. (1965) Effect of Temperature on Growth and Nutritional Requirements of Leishmania tarentolae in a Defined Medium. The Journal of Protozoology, 12, 73-78.
https://doi.org/10.1111/j.1550-7408.1965.tb01815.x
[24]  Kattoof, W.M. (2018) Intralesional Streptomycin: New, Safe, and Effective Therapeutic Option for Cutaneous Leishmaniasis. Mustansiriya Medical Journal, 17, 42-46.
https://doi.org/10.4103/MJ.MJ_11_18
[25]  Cole, R.J. and Danielli, J.F. (1963) Nuclear Cytoplasmic Interactions in the Responses of Amoeba proteus and Amoeba discoides to Streptomycin. Experimental Cell Research, 29, 194-206.
https://doi.org/10.1016/0014-4827(63)90375-6
[26]  Maarouf, M., De Kouchkovsky, Y., Brown, S., Petit, P.X. and Robert-Gero, M. (1997) In Vivo Interference of Paromomycin with Mitochondrial Activity of Leishmania. Experimental Cell Research, 232, 339-348.
https://doi.org/10.1006/excr.1997.3500
[27]  Horváth, A., Neboháčová, M., Lukeš, J. and Maslov, D.A. (2002) Unusual Polypeptide Synthesis in the Kinetoplast-Mitochondria from Leishmania tarentolae. Identification of Individual de novo Translation Products. Journal of Biological Chemistry, 277, 7222-7230.
https://doi.org/10.1074/jbc.M109715200
[28]  Hobbie, S.N., Kaiser, M., Schmidt, S., Shcherbakov, D., Janusic, T., Brun, R. and Böttger, E.C. (2011) Genetic Reconstruction of Protozoan rRNA Decoding Sites Provides a Rationale for Paromomycin Activity against Leishmania and Trypanosoma. PLOS Neglected Tropical Diseases, 5, e1161.
https://doi.org/10.1371/journal.pntd.0001161
[29]  National Center for Biotechnology Information (2024) PubChem Compound Summary for CID 19649, Streptomycin.
https://pubchem.ncbi.nlm.nih.gov/compound/Streptomycin-a
[30]  National Center for Biotechnology Information (2024) PubChem Compound Summary for CID 5280965, Amphotericin B.
https://pubchem.ncbi.nlm.nih.gov/compound/Amphotericin-b
[31]  Chattopadhyay, A. and Jafurulla, M. (2011) A Novel Mechanism for an Old Drug: Amphotericin B in the Treatment of Visceral Leishmaniasis. Biochemical and Biophysical Research Communications, 416, 7-12.
https://doi.org/10.1016/j.bbrc.2011.11.023
[32]  Hartsel, S. and Bolard, J. (1996) Amphotericin B: New Life for an Old Drug. Trends in Pharmacological Sciences, 17, 445-449.
https://doi.org/10.1016/S0165-6147(96)01012-7
[33]  Gundampati, R.K., Chandrasekaran, S. and Jagannadham, M.V. (2013) Molecular Docking Study on the Interaction between Trypanothione Reductase and Mangiferin for Antileishmanial Activity. Bangladesh Journal of Pharmacology, 8, 40-43.
https://doi.org/10.3329/bjp.v8i1.13034
[34]  Shaukat, A., Mirza, H.M., Ansari, A.H., Yasinzai, M., Zaidi, S.Z., Dilshad, S. and Ansari, F.L. (2013) Benzimidazole Derivatives: Synthesis, Leishmanicidal Effectiveness, and Molecular Docking Studies. Medicinal Chemistry Research, 22, 3606-3620.
https://doi.org/10.1007/s00044-012-0375-5
[35]  Querido, J.B., Mancera-Martínez, E., Vicens, Q., Bochler, A., Chicher, J., Simonetti, A. and Hashem, Y. (2017) The Cryo-EM Structure of a Novel 40S Kinetoplastid-Specific Ribosomal Protein. Structure, 25, 1785-1794.
https://doi.org/10.1016/j.str.2017.09.014
[36]  Chemical Computing Group ULC (2019) Molecular Operating Environment (MOE). Montreal.
[37]  Shulman, E., Belakhov, V., Wei, G., Kendall, A., Meyron-Holtz, E.G., Ben-Shachar, D., Schacht, T. and Baasov, T. (2014) Designer Aminoglycosides that Selectively Inhibit Cytoplasmic Rather than Mitochondrial Ribosomes Show Decreased Ototoxicity a Strategy for the Treatment of Genetic Diseases. Journal of Biological Chemistry, 289, 2318-2330.
https://doi.org/10.1074/jbc.M113.533588
[38]  Shalev-Benami, M., Zhang, Y., Matzov, D., Halfon, Y., Zackay, A., Rozenberg, H., Skiniotis, G., et al. (2016) 2.8-Å Cryo-EM Structure of the Large Ribosomal Subunit from the Eukaryotic Parasite Leishmania. Cell Reports, 16, 288-294.
https://doi.org/10.1016/j.celrep.2016.06.014
[39]  Bagnéris, C., DeCaen, P.G., Naylor, C.E., Pryde, D.C., Nobeli, I., Clapham, D.E. and Wallace, B.A. (2014) Prokaryotic NavMs Channel as a Structural and Functional Model for Eukaryotic Sodium Channel Antagonism. Proceedings of the National Academy of Sciences, 111, 8428-8433.
https://doi.org/10.1073/pnas.1406855111
[40]  Fang, Y., Kirkland, J., Amaye, I.J., Jackson-Ayotunde, P. and George Jr., M. (2019) Molecular Docking Studies on Anticonvulsant Enaminones Inhibiting Voltage-Gated Sodium Channels. Open Journal of Physical Chemistry, 9, 241-257.
https://doi.org/10.4236/ojpc.2019.94015
[41]  Batt, C.A. and Tortorello, M.L. (2023) Encyclopedia of Food Microbiology. 2nd Edition, Academic Press Elsevier, Cambridge, MA.
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=542944
[42]  Trevor, A.J., Katzung, B.G., Masters, S.B. and Kruidering-Hall, M. (2010) Pharmacology Examination & Board Review. McGraw-Hill Medical, New York, 121-132
[43]  Wasan, E., Mandava, T., Crespo-Moran, P., Nagy, A. and Wasan, K.M. (2022) Review of Novel Oral Amphotericin B Formulations for the Treatment of Parasitic Infections. Pharmaceutics, 14, Article 2316.
https://doi.org/10.3390/pharmaceutics14112316
[44]  Berman, J. (2015) Amphotericin B Formulations and Other Drugs for Visceral Leishmaniasis. The American Journal of Tropical Medicine and Hygiene, 92, 471-473.
https://doi.org/10.4269/ajtmh.14-0743
[45]  Parvez, S., Yadagiri, G., Gedda, M.R., Singh, A., Singh, O.P., Verma, A., Sundar, A. and Mudavath, S.L. (2020) Modified Solid Lipid Nanoparticles Encapsulated with Amphotericin B and Paromomycin: An Effective Oral Combination Against Experimental Murine Visceral Leishmaniasis. Scientific Reports, 10, Article No. 12243.
https://doi.org/10.1038/s41598-020-69276-5
[46]  Esfandiari, F., Motazedian, M.H., Asgari, Q., Morowvat, M.H., Molaei, M. and Heli, H. (2019) Paromomycin-Loaded Mannosylated Chitosan Nanoparticles: Synthesis, Characterization and Targeted Drug Delivery against Leishmaniasis. Acta Tropica, 197, Article 105072.
https://doi.org/10.1016/j.actatropica.2019.105072

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133