|
急性胰腺炎中程序性细胞死亡的研究进展
|
Abstract:
急性胰腺炎(acute pancreatitis, AP)作为一种自限性腹部疾病,未能及时有效地治疗或将发展成为重症急性胰腺炎(severe acute pancreatitis, SAP),往往导致毁灭性的炎症反应及器官障碍。在此过程中,涉及紧密的信号通路和分子效应机制,精准地调控程序性细胞死亡(programmed cell death, PCD),包括凋亡、自噬、程序性坏死、焦亡、铁死亡及铜死亡。针对PCD的探究,了解其内在相互交错的级联通路,有助于进一步探寻AP的发病机制,为临床治疗找寻新的方向。
Acute pancreatitis (AP) as a self-limiting abdominal disease, if not treated promptly and effectively, can develop into severe acute pancreatitis (SAP), often leading to destructive inflammatory reactions and organ dysfunction. In this process, closely linked signaling pathways and molecular effect mechanisms precisely regulate programmed cell death (PCD), including apoptosis, autophagy, programmed necrosis, necroptosis, ferroptosis, and cuproptosis. Exploring PCD and understanding its intrinsic interwoven cascade pathways can help further explore the pathogenesis of AP and seek new directions for clinical treatment.
[1] | Boxhoorn, L., Voermans, R.P., Bouwense, S.A., et al. (2020) Acute Pancreatitis. The Lancet, 396, 726-734. https://doi.org/10.1016/S0140-6736(20)31310-6 |
[2] | Mederos, M.A., Reber, H.A. and Girgis, M.D. (2021) Acute Pancreatitis: A Review. JAMA, 325, 382-390. https://doi.org/10.1001/jama.2020.20317 |
[3] | Lee, P.J. and Papachristou, G.I. (2019) New Insights into Acute Pancreatitis. Nature Reviews. Gastroenterology & Hepatology, 16, 479-496. https://doi.org/10.1038/s41575-019-0158-2 |
[4] | Wiley, M.B., Mehrotra, K., Bauer, J., et al. (2023) Acute Pancreatitis: Current Clinical Approaches, Molecular Pathophysiology, and Potential Therapeutics. Pancreas, 52, e335-e343. https://doi.org/10.1097/MPA.0000000000002259 |
[5] | Forsmark, C.E., Vege, S.S. and Wilcox, C.M. (2016) Acute Pancreatitis. The New England Journal of Medicine, 375, 1972-1981. https://doi.org/10.1056/NEJMra1505202 |
[6] | Tang, D., Kang, R., Berghe, T.V., et al. (2019) The Molecular Machinery of Regulated Cell Death. Cell Research, 29, 347-364. https://doi.org/10.1038/s41422-019-0164-5 |
[7] | Kist, M. and Vucic, D. (2021) Cell Death Pathways: Intricate Connections and Disease Implications. The EMBO Journal, 40, e106700. https://doi.org/10.15252/embj.2020106700 |
[8] | Peng, F., Liao, M., Qin, R., et al. (2022) Regulated Cell Death (RCD) in Cancer: Key Pathways and Targeted Therapies. Signal Transduction and Targeted Therapy, 7, Article No. 286. https://doi.org/10.1038/s41392-022-01110-y |
[9] | Hadian, K. and Stockwell, B.R. (2023) The Therapeutic Potential of Targeting Regulated Non-Apoptotic Cell Death. Nature Reviews. Drug Discovery, 22, 723-742. https://doi.org/10.1038/s41573-023-00749-8 |
[10] | N?ssing, C. and Ryan, K.M. (2023) 50 Years on and Still Very Much Alive: Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. British Journal of Cancer, 128, 426-431. https://doi.org/10.1038/s41416-022-02020-0 |
[11] | Bedoui, S., Herold, M.J. and Strasser, A. (2020) Emerging Connectivity of Programmed Cell Death Pathways and Its Physiological Implications. Nature Reviews. Molecular Cell Biology, 21, 678-695. https://doi.org/10.1038/s41580-020-0270-8 |
[12] | Galluzzi, L., Blomgren, K. and Kroemer, G. (2009) Mitochondrial Membrane Permeabilization in Neuronal Injury. Nature Reviews. Neuroscience, 10, 481-494. https://doi.org/10.1038/nrn2665 |
[13] | Lin, R., Chen, F., Wen, S., et al. (2018) Interleukin-10 Attenuates Impairment of the Blood-Brain Barrier in a Severe Acute Pancreatitis Rat Model. Journal of Inflammation, 15, Article No. 4. https://doi.org/10.1186/s12950-018-0180-0 |
[14] | Lavrik, I.N. and Krammer, P.H. (2012) Regulation of CD95/Fas Signaling at the DISC. Cell Death and Differentiation, 19, 36-41. https://doi.org/10.1038/cdd.2011.155 |
[15] | Bansod, S. and Godugu, C. (2021) Nimbolide Ameliorates Pancreatic Inflammation and Apoptosis by Modulating NF-κB/SIRT1 and Apoptosis Signaling in Acute Pancreatitis Model. International Immunopharmacology, 90, Article 107246. https://doi.org/10.1016/j.intimp.2020.107246 |
[16] | Mochida, K. and Nakatogawa, H. (2022) ER-Phagy: Selective Autophagy of the Endoplasmic Reticulum. EMBO Reports, 23, e55192. https://doi.org/10.15252/embr.202255192 |
[17] | Fjeld, K., Gravdal, A., Brekke, R.S., et al. (2022) The Genetic Risk Factor CEL-HYB1 Causes Proteotoxicity and Chronic Pancreatitis in Mice. Pancreatology, 22, 1099-1111. https://doi.org/10.1016/j.pan.2022.11.003 |
[18] | Tan, J.-H., Cao, R.-C., Zhou, L., et al. (2020) ATF6 Aggravates Acinar Cell Apoptosis and Injury by Regulating p53/AIFM2 Transcription in Severe Acute Pancreatitis. Theranostics, 10, 8298-8314. https://doi.org/10.7150/thno.46934 |
[19] | Wang, J., Li, C., Jiang, Y., et al. (2017) Effect of Ceramide-1-Phosphate Transfer Protein on Intestinal Bacterial Translocation in Severe Acute Pancreatitis. Clinics and Research in Hepatology and Gastroenterology, 41, 86-92. https://doi.org/10.1016/j.clinre.2016.08.003 |
[20] | De Duve, C. (1963) The Lysosome. Scientific American, 208, 64-72. https://doi.org/10.1038/scientificamerican0563-64 |
[21] | Gao, W., Wang, X., Zhou, Y., et al. (2022) Autophagy, Ferroptosis, Pyroptosis, and Necroptosis in Tumor Immunotherapy. Signal Transduction and Targeted Therapy, 7, Article No. 196. https://doi.org/10.1038/s41392-022-01046-3 |
[22] | Liu, G.Y. and Sabatini, D.M. (2020) mTOR at the Nexus of Nutrition, Growth, Ageing and Disease. Nature Reviews. Molecular Cell Biology, 21, 183-203. https://doi.org/10.1038/s41580-019-0199-y |
[23] | Hardie, D.G. (2015) AMPK: Positive and Negative Regulation, and Its Role in Whole-Body Energy Homeostasis. Current Opinion in Cell Biology, 33, 1-7. https://doi.org/10.1016/j.ceb.2014.09.004 |
[24] | Huangfu, Y., Yu, X., Wan, C., et al. (2023) Xanthohumol Alleviates Oxidative Stress and Impaired Autophagy in Experimental Severe Acute Pancreatitis through Inhibition of AKT/mTOR. Frontiers in Pharmacology, 14, Article 1105726. https://doi.org/10.3389/fphar.2023.1105726 |
[25] | Wang, K., Zhao, A., Tayier, D., et al. (2023) Activation of AMPK Ameliorates Acute Severe Pancreatitis by Suppressing Pancreatic Acinar Cell Necroptosis in Obese Mice Models. Cell Death Discovery, 9, Article No. 363. https://doi.org/10.1038/s41420-023-01655-z |
[26] | Ganley, I.G., Lam, D.H., Wang, J., et al. (2009) ULK1.ATG13.FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy. The Journal of Biological Chemistry, 284, 12297-12305. https://doi.org/10.1074/jbc.M900573200 |
[27] | Levine, B., Liu, R., Dong, X., et al. (2015) Beclin Orthologs: Integrative Hubs of Cell Signaling, Membrane Trafficking, and Physiology. Trends in Cell Biology, 25, 533-544. https://doi.org/10.1016/j.tcb.2015.05.004 |
[28] | Hu, F., Tao, X., Zhao, L., et al. (2020) LncRNA-PVT1 Aggravates Severe Acute Pancreatitis by Promoting Autophagy via the miR-30a-5p/Beclin-1 Axis. American Journal of Translational Research, 12, 5551-5562. |
[29] | Biczo, G., Vegh, E.T., Shalbueva, N., et al. (2018) Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology, 154, 689-703. https://doi.org/10.1053/j.gastro.2017.10.012 |
[30] | Fortunato, F., Bürgers, H., Bergmann, F., et al. (2009) Impaired Autolysosome Formation Correlates with Lamp-2 Depletion: Role of Apoptosis, Autophagy, and Necrosis in Pancreatitis. Gastroenterology, 137, 350-360. https://doi.org/10.1053/j.gastro.2009.04.003 |
[31] | Degterev, A., Huang, Z., Boyce, M., et al. (2005) Chemical Inhibitor of Nonapoptotic Cell Death with Therapeutic Potential for Ischemic Brain Injury. Nature Chemical Biology, 1, 112-119. https://doi.org/10.1038/nchembio711 |
[32] | Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., et al. (2014) Regulated Necrosis: The Expanding Network of Non-Apoptotic Cell Death Pathways. Nature Reviews. Molecular Cell Biology, 15, 135-147. https://doi.org/10.1038/nrm3737 |
[33] | Liang, Q.-Q., Shi, Z.-J., Yuan, T., et al. (2023) Celastrol Inhibits Necroptosis by Attenuating the RIPK1/RIPK3/MLKL Pathway and Confers Protection against Acute Pancreatitis in Mice. International Immunopharmacology, 117, Article 109974. https://doi.org/10.1016/j.intimp.2023.109974 |
[34] | Song, X., Zhu, S., Xie, Y., et al. (2018) JTC801 Induces pH-Dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice. Gastroenterology, 154, 1480-1493. https://doi.org/10.1053/j.gastro.2017.12.004 |
[35] | Quarato, G., Guy, C.S., Grace, C.R., et al. (2016) Sequential Engagement of Distinct MLKL Phosphatidylinositol-Binding Sites Executes Necroptosis. Molecular Cell, 61, 589-601. https://doi.org/10.1016/j.molcel.2016.01.011 |
[36] | Zhao, X.M., Chen, Z., Zhao, J.B., et al. (2016) Hsp90 Modulates the Stability of MLKL and Is Required for TNF-Induced Necroptosis. Cell Death & Disease, 7, e2089. https://doi.org/10.1038/cddis.2015.390 |
[37] | Samson, A.L., Zhang, Y., Geoghegan, N.D., et al. (2020) MLKL Trafficking and Accumulation at the Plasma Membrane Control the Kinetics and Threshold for Necroptosis. Nature Communications, 11, Article No. 3151. https://doi.org/10.1038/s41467-020-16887-1 |
[38] | Cui, Q.-R., Ling, Y.-H., Wen, S.-H., et al. (2019) Gut Barrier Dysfunction Induced by Aggressive Fluid Resuscitation in Severe Acute Pancreatitis is Alleviated by Necroptosis Inhibition in Rats. Shock, 52, e107-e116. https://doi.org/10.1097/SHK.0000000000001304 |
[39] | Zhu, Q., Hao, L., Shen, Q., et al. (2021) CaMK II Inhibition Attenuates ROS Dependent Necroptosis in Acinar Cells and Protects against Acute Pancreatitis in Mice. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 4187398. https://doi.org/10.1155/2021/4187398 |
[40] | Fink, S.L. and Cookson, B.T. (2006) Caspase-1-Dependent Pore Formation during Pyroptosis Leads to Osmotic Lysis of Infected Host Macrophages. Cellular Microbiology, 8, 1812-1825. https://doi.org/10.1111/j.1462-5822.2006.00751.x |
[41] | Zhang, L., Liu, H., Jia, L., et al. (2019) Exosomes Mediate Hippocampal and Cortical Neuronal Injury Induced by Hepatic Ischemia-Reperfusion Injury through Activating Pyroptosis in Rats. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 3753485. https://doi.org/10.1155/2019/3753485 |
[42] | Saadi, M., Karkhah, A., Pourabdolhossein, F., et al. (2020) Involvement of NLRC4 Inflammasome through Caspase-1 and IL-1β Augments Neuroinflammation and Contributes to Memory Impairment in an Experimental Model of Alzheimer’s Like Disease. Brain Research Bulletin, 154, 81-90. https://doi.org/10.1016/j.brainresbull.2019.10.010 |
[43] | Cai, S.-Y., Ge, M., Mennone, A., et al. (2020) Inflammasome Is Activated in the Liver of Cholestatic Patients and Aggravates Hepatic Injury in Bile Duct-Ligated Mouse. Cellular and Molecular Gastroenterology and Hepatology, 9, 679-688. https://doi.org/10.1016/j.jcmgh.2019.12.008 |
[44] | Lu, Y., Meng, R., Wang, X., et al. (2019) Caspase-11 Signaling Enhances Graft-versus-Host Disease. Nature Communications, 10, Article No. 4044. https://doi.org/10.1038/s41467-019-11895-2 |
[45] | Lacey, C.A., Mitchell, W.J., Dadelahi, A.S., et al. (2018) Caspase-1 and Caspase-11 Mediate Pyroptosis, Inflammation, and Control of Brucella Joint Infection. Infection and Immunity, 86, e00361-18. https://doi.org/10.1128/IAI.00361-18 |
[46] | Shen, S., Xiao, W., Jiang, W., et al. (2024) Fenbufen Alleviates Severe Acute Pancreatitis by Suppressing Caspase-1/Caspase-11-Mediated Pyroptosis in Mice. Current Molecular Pharmacology, 17, e110523216783. https://doi.org/10.2174/1874467217666230511095540 |
[47] | Gao, L., Dong, X., Gong, W., et al. (2021) Acinar Cell NLRP3 Inflammasome and Gasdermin D (GSDMD) Activation Mediates Pyroptosis and Systemic Inflammation in Acute Pancreatitis. British Journal of Pharmacology, 178, 3533-3552. https://doi.org/10.1111/bph.15499 |
[48] | Pan, X., Fang, X., Wang, F., et al. (2019) Butyrate Ameliorates Caerulein-Induced Acute Pancreatitis and Associated Intestinal Injury by Tissue-Specific Mechanisms. British Journal of Pharmacology, 176, 4446-4461. https://doi.org/10.1111/bph.14806 |
[49] | Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042 |
[50] | Li, J., Cao, F., Yin, H.-L., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. https://doi.org/10.1038/s41419-020-2298-2 |
[51] | Bogdan, A.R., Miyazawa, M., Hashimoto, K., et al. (2016) Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. Trends in Biochemical Sciences, 41, 274-286. https://doi.org/10.1016/j.tibs.2015.11.012 |
[52] | Gammella, E., Recalcati, S., Rybinska, I., et al. (2015) Iron-Induced Damage in Cardiomyopathy: Oxidative-Dependent and Independent Mechanisms. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 230182. https://doi.org/10.1155/2015/230182 |
[53] | Xia, H., Wu, Y., Zhao, J., et al. (2023) N6-Methyladenosine-Modified circSAV1 Triggers Ferroptosis in COPD through Recruiting YTHDF1 to Facilitate the Translation of IREB2. Cell Death and Differentiation, 30, 1293-1304. https://doi.org/10.1038/s41418-023-01138-9 |
[54] | Sundar, V., Senthil Kumar, K.A., Manickam, V., et al. (2020) Current Trends in Pharmacological Approaches for Treatment and Management of Acute Pancreatitis—A Review. The Journal of Pharmacy and Pharmacology, 72, 761-775. https://doi.org/10.1111/jphp.13229 |
[55] | Tao, J., Zhang, Y., Huang, Y., et al. (2023) The Role of Iron and Ferroptosis in the Pathogenesis of Acute Pancreatitis. Journal of Histotechnology, 46, 184-193. https://doi.org/10.1080/01478885.2023.2261093 |
[56] | Ma, D., Li, C., Jiang, P., et al. (2021) Inhibition of Ferroptosis Attenuates Acute Kidney Injury in Rats with Severe Acute Pancreatitis. Digestive Diseases and Sciences, 66, 483-492. https://doi.org/10.1007/s10620-020-06225-2 |
[57] | Song, J., Sheng, J., Lei, J., et al. (2022) Mitochondrial Targeted Antioxidant SKQ1 Ameliorates Acute Kidney Injury by Inhibiting Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2223957. https://doi.org/10.1155/2022/2223957 |
[58] | Doll, S., Proneth, B., Tyurina, Y.Y., et al. (2017) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98. https://doi.org/10.1038/nchembio.2239 |
[59] | Yang, L., Ye, F., Liu, J., et al. (2023) Extracellular SQSTM1 Exacerbates Acute Pancreatitis by Activating Autophagy-Dependent Ferroptosis. Autophagy, 19, 1733-1744. https://doi.org/10.1080/15548627.2022.2152209 |
[60] | Loboda, A., Damulewicz, M., Pyza, E., et al. (2016) Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cellular and Molecular Life Sciences, 73, 3221-3247. https://doi.org/10.1007/s00018-016-2223-0 |
[61] | Shan, Y., Li, J., Zhu, A., et al. (2022) Ginsenoside Rg3 Ameliorates Acute Pancreatitis by Activating the NRF2/HO-1-Mediated Ferroptosis Pathway. International Journal of Molecular Medicine, 50, Article No. 89. https://doi.org/10.3892/ijmm.2022.5144 |
[62] | Guo, H., Wang, Y., Cui, H., et al. (2022) Copper Induces Spleen Damage through Modulation of Oxidative Stress, Apoptosis, DNA Damage, and Inflammation. Biological Trace Element Research, 200, 669-677. https://doi.org/10.1007/s12011-021-02672-8 |
[63] | Tsvetkov, P., Coy, S., Petrova, B., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261. https://doi.org/10.1126/science.abf0529 |
[64] | Cao, S., Wang, Q., Sun, Z., et al. (2023) Role of Cuproptosis in Understanding Diseases. Human Cell, 36, 1244-1252. https://doi.org/10.1007/s13577-023-00914-6 |
[65] | Solier, S., Müller, S., Ca?eque, T., et al. (2023) A Druggable Copper-Signalling Pathway That Drives Inflammation. Nature, 617, 386-394. https://doi.org/10.1038/s41586-023-06017-4 |
[66] | Sun, Z., Zhao, Q., Zhang, J., et al. (2024) Bioinformatics Reveals Diagnostic Potential of Cuproptosis-Related Genes in the Pathogenesis of Sepsis. Heliyon, 10, e22664. https://doi.org/10.1016/j.heliyon.2023.e22664 |
[67] | Yan, J., Li, Z., Li, Y., et al. (2024) Sepsis Induced Cardiotoxicity by Promoting Cardiomyocyte Cuproptosis. Biochemical and Biophysical Research Communications, 690, Article 149245. https://doi.org/10.1016/j.bbrc.2023.149245 |
[68] | Chen, L., Min, J. and Wang, F. (2022) Copper Homeostasis and Cuproptosis in Health and Disease. Signal Transduction and Targeted Therapy, 7, Article No. 378. https://doi.org/10.1038/s41392-022-01229-y |
[69] | Li, H., Wu, D., Zhang, H., et al. (2023) New Insights into Regulatory Cell Death and Acute Pancreatitis. Heliyon, 9, e18036. https://doi.org/10.1016/j.heliyon.2023.e18036 |