全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Etitiological Relationship between Hyperlipidemia and Acute Pancreatitis

DOI: 10.4236/jbm.2024.125005, PP. 45-60

Keywords: Hyperlipidemia, Acute Pancreatitis, High-Fat Diet, Cause

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hyperlipidemia is a kind of pancreatitis caused by high triglyceride levels in the blood. The morbidity and mortality of this disease continue to increase worldwide, and it has become one of the most common gastrointestinal diseases in developed countries worldwide. Although many studies have been conducted, the pathogenesis still cannot be defined. Many studies have shown that this may be related to the triglyceride decomposition products free fatty acids are the main toxic substances, which can directly damage pancreatic acinar cells and vascular endothelial cells, causing tissue ischemia and acidic environment. Therefore, this paper focuses on the correlation of triglycerides and their decomposition products in plasma and provides evidence on the pathogenesis of AP and the disease progression of AP. Finally, the future potential to prevent and treat acute pancreatitis by some new drugs to reduce plasma triglycerides is summarized.

References

[1]  Petrov, M.S. and Yadav, D. (2019) Global Epidemiology and Holistic Prevention of Pancreatitis. Nature Reviews Gastroenterology & Hepatology, 16, 175-184.
https://doi.org/10.1038/s41575-018-0087-5
[2]  Lin, X.Y., et al. (2022) Incidence and Clinical Characteristics of Hypertriglyceridemic Acute Pancreatitis: A Retrospective Single-Center Study. World Journal of Gastroenterology, 28, 3946-3959.
https://doi.org/10.3748/wjg.v28.i29.3946
[3]  Garg, R. and Rustagi, T. (2018) Management of Hypertriglyceridemia Induced Acute Pancreatitis. BioMed Research International, 2018, Article ID: 4721357.
https://doi.org/10.1155/2018/4721357
[4]  Cruz-Bautista, I., et al. (2021) Familial Hypertriglyceridemia: An Entity with Distinguishable Features from Other Causes of Hypertriglyceridemia. Lipids in Health and Disease, 20, Article Number 14.
https://doi.org/10.1186/s12944-021-01436-6
[5]  Kiss, L., et al. (2023) Mechanisms Linking Hypertriglyceridemia to Acute Pancreatitis. Acta Physiologica, 237, e13916.
https://doi.org/10.1111/apha.13916
[6]  Dong, X.L., et al. (2022) Hyperlipemia Pancreatitis Onset Time Affects the Association between Elevated Serum Triglyceride Levels and Disease Severity. Lipids in Health and Disease, 21, Article No, 49.
https://doi.org/10.1186/s12944-022-01656-4
[7]  Sun, Y.M., Gao, F., Chen, X. and Zhang, J. (2020) The Relationship between Triglyceride Level and the Severity of Acute Hypertriglyceridemic Pancreatitis in Chinese Patients. The Turkish Journal of Gastroenterology, 31, 633-639.
https://doi.org/10.5152/tjg.2020.18335
[8]  Lazarte, J. and Hegele, R.A. (2021) Volanesorsen for Treatment of Familial Chylomicronemia Syndrome. Expert Review of Cardiovascular Therapy, 19, 685-693.
https://doi.org/10.1080/14779072.2021.1955348
[9]  Grundy, S.M., et al. (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/ AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 139, e1082-e1186.
https://doi.org/10.1161/CIR.0000000000000698
[10]  Hong, Y.P., et al. (2020) High-Fat Diet Aggravates Acute Pancreatitis via TLR4-Mediated Necroptosis and Inflammation in Rats. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 8172714.
https://doi.org/10.1155/2020/8172714
[11]  Chang, Y.T., et al. (2015) Distinctive Roles of Unsaturated and Saturated Fatty Acids in Hyperlipidemic Pancreatitis. World Journal of Gastroenterology, 21, 9534-9543.
https://doi.org/10.3748/wjg.v21.i32.9534
[12]  Zeng, Y., et al. (2012) Hypertriglyceridemia Aggravates ER Stress and Pathogenesis of Acute Pancreatitis. Hepato-Gastroenterology, 59, 2318-2326.
https://doi.org/10.5754/hge12042
[13]  Dai, J.J., et al. (2021) Dysregulated SREBP1c/MiR-153 Signaling Induced by Hypertriglyceridemia Worsens Acute Pancreatitis and Delays Tissue Repair. JCI Insight, 6, e138584.
https://doi.org/10.1172/jci.insight.138584
[14]  Zhang, G.F., et al. (2022) GPIHBP1 Autoantibody Is an Independent Risk Factor for the Recurrence of Hypertriglyceridemia-Induced Acute Pancreatitis. Journal of Clinical Lipidology, 16, 626-634.
https://doi.org/10.1016/j.jacl.2022.08.001
[15]  Yu, S.S., et al. (2019) Low Serum Ionized Calcium, Elevated High-Sensitivity C-Reactive Protein, Neutrophil-Lymphocyte Ratio, and Body Mass Index (BMI) Are Risk Factors for Severe Acute Pancreatitis in Patients with Hypertriglyceridemia Pancreatitis. Medical Science Monitor, 25, 6097-6103.
https://doi.org/10.12659/MSM.915526
[16]  Petersen, O.H., et al. (2009) Fatty Acids, Alcohol and Fatty Acid Ethyl Esters: Toxic Ca2 Signal Generation and Pancreatitis. Cell Calcium, 45, 634-642.
https://doi.org/10.1016/j.ceca.2009.02.005
[17]  Criddle, D.N. (2015) The Role of Fat and Alcohol in Acute Pancreatitis: A Dangerous Liaison. Pancreatology, 15, S6-S12.
https://doi.org/10.1016/j.pan.2015.02.009
[18]  Criddle, D.N., et al. (2006) Fatty Acid Ethyl Esters Cause Pancreatic Calcium Toxicity via Inositol Trisphosphate Receptors and Loss of ATP Synthesis. Gastroenterology, 130, 781-793.
https://doi.org/10.1053/j.gastro.2005.12.031
[19]  Navina, S., et al. (2011) Lipotoxicity Causes Multisystem Organ Failure and Exacerbates Acute Pancreatitis in Obesity. Science Translational Medicine, 3, 107ra110.
https://doi.org/10.1126/scitranslmed.3002573
[20]  Carta, G., et al. (2017) Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Frontiers in Physiology, 8, Article 902.
https://doi.org/10.3389/fphys.2017.00902
[21]  Korbecki, J. and Bajdak-Rusinek, K. (2019) The Effect of Palmitic Acid on Inflammatory Response in Macrophages: An Overview of Molecular Mechanisms. Inflammation Research, 68, 915-932.
https://doi.org/10.1007/s00011-019-01273-5
[22]  Nemecz, M., et al. (2019) The Distinct Effects of Palmitic and Oleic Acid on Pancreatic Beta Cell Function: The Elucidation of Associated Mechanisms and Effector Molecules. Frontiers in Pharmacology, 9, Article 1554.
https://doi.org/10.3389/fphar.2018.01554
[23]  Samad, A., et al. (2014) Insulin Protects Pancreatic Acinar Cells from Palmitoleic Acid-Induced Cellular Injury. The Journal of Biological Chemistry, 289, 23582-23595.
https://doi.org/10.1074/jbc.M114.589440
[24]  Mankad, P., et al. (2012) Insulin Protects Pancreatic Acinar Cells from Cytosolic Calcium Overload and Inhibition of Plasma Membrane Calcium Pump. The Journal of Biological Chemistry, 287, 1823-1836.
https://doi.org/10.1074/jbc.M111.326272
[25]  Sah, R.P., et al. (2014) Endoplasmic Reticulum Stress Is Chronically Activated in Chronic Pancreatitis. The Journal of Biological Chemistry, 289, 27551-27561.
https://doi.org/10.1074/jbc.M113.528174
[26]  Yang, D., et al. (2022) The Synergistic Effect of Palmitic Acid and Glucose on Inducing Endoplasmic Reticulum Stress-Associated Apoptosis in Rat Schwann Cells. European Review for Medical and Pharmacological Sciences, 26, 148-157.
[27]  Wu, J.H., et al. (2016) Palmitic Acid Aggravates Inflammation of Pancreatic Acinar Cells by Enhancing Unfolded Protein Response Induced CCAAT-Enhancer-Binding Protein β-CCAAT-Enhancer-Binding Protein α Activation. The International Journal of Biochemistry & Cell Biology, 79, 181-193.
https://doi.org/10.1016/j.biocel.2016.08.035
[28]  Pierre, N., et al. (2013) Toll-Like Receptor 4 Knockout Mice Are Protected against Endoplasmic Reticulum Stress Induced by a High-Fat Diet. PLOS ONE, 8, e65061.
https://doi.org/10.1371/journal.pone.0065061
[29]  Zheng, J.Y., et al. (2016) Therapeutic Effects of Quercetin on Early Inflammation in Hypertriglyceridemia-Related Acute Pancreatitis and Its Mechanism. Pancreatology, 16, 200-210.
https://doi.org/10.1016/j.pan.2016.01.005
[30]  Holowatz, L.A., et al. (2011) Oral Atorvastatin Therapy Restores Cutaneous Microvascular Function by Decreasing Arginase Activity in Hypercholesterolaemic Humans. The Journal of Physiology, 589, 2093-2103.
https://doi.org/10.1113/jphysiol.2010.203935
[31]  Tokoro, T., et al. (2020) Interactions between Neutrophils and Platelets in the Progression of Acute Pancreatitis. Pancreas, 49, 830-836.
https://doi.org/10.1097/MPA.0000000000001585
[32]  De Pretis, N., Amodio, A. and Frulloni, L. (2018) Hypertriglyceridemic Pancreatitis: Epidemiology, Pathophysiology and Clinical Management. United European Gastroenterology Journal, 6, 649-655.
https://doi.org/10.1177/2050640618755002
[33]  Valdivielso, P., Ramírez-Bueno, A. and Ewald, N. (2014) Current Knowledge of Hypertriglyceridemic Pancreatitis. European Journal of Internal Medicine, 25, 689-694.
https://doi.org/10.1016/j.ejim.2014.08.008
[34]  Vinarov, Z., et al. (2012) In Vitro Study of Triglyceride Lipolysis and Phase Distribution of the Reaction Products and Cholesterol: Effects of Calcium and Bicarbonate. Food & Function, 3, 1206-1220.
https://doi.org/10.1039/c2fo30085k
[35]  Sandoval, J., et al. (2016) Epigenetic Regulation of Early-and Late-Response Genes in Acute Pancreatitis. Journal of Immunology, 197, 4137-4150.
https://doi.org/10.4049/jimmunol.1502378
[36]  Wang, S.H., et al. (2016) Relationship between Plasma Triglyceride Level and Severity of Hypertriglyceridemic Pancreatitis. PLOS ONE, 11, e0163984.
https://doi.org/10.1371/journal.pone.0163984
[37]  Gukovskaya, A.S., Gukovsky, I., Algül, H. and Habtezion, A. (2017) Autophagy, Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis. Gastroenterology, 153, 1212-1226.
https://doi.org/10.1053/j.gastro.2017.08.071
[38]  (2019) Correction: Mechanism of Mitochondrial Permeability Transition Pore Induction and Damage in the Pancreas: Inhibition Prevents Acute Pancreatitis by Protecting Production of ATP. Gut, 68, 1136.
https://doi.org/10.1136/gutjnl-2014-308553corr1
[39]  Mei, Q.X., et al. (2020) Rapamycin Alleviates Hypertriglyceridemia-Related Acute Pancreatitis via Restoring Autophagy Flux and Inhibiting Endoplasmic Reticulum Stress. Inflammation, 43, 1510-1523.
https://doi.org/10.1007/s10753-020-01228-7
[40]  Dong, Z.J., et al. (2016) Sulforaphane Protects Pancreatic Acinar Cell Injury by Modulating Nrf2-Mediated Oxidative Stress and NLRP3 Inflammatory Pathway. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 7864150.
https://doi.org/10.1155/2016/7864150
[41]  Wu, S., et al. (2020) High-Fat Diet Increased NADPH-Oxidase-Related Oxidative Stress and Aggravated LPS-Induced Intestine Injury. Life Sciences, 253, Article ID: 117539.
https://doi.org/10.1016/j.lfs.2020.117539
[42]  Li, N., Frigerio, F. and Maechler, P. (2008) The Sensitivity of Pancreatic β-Cells to Mitochondrial Injuries Triggered by Lipotoxicity and Oxidative Stress. Biochemical Society Transactions, 36, 930-934.
https://doi.org/10.1042/BST0360930
[43]  Xia, W.W., et al. (2022) Excess Fatty Acids Induce Pancreatic Acinar Cell Pyroptosis through Macrophage M1 Polarization. BMC Gastroenterology, 22, Article No. 72.
https://doi.org/10.1186/s12876-022-02146-8
[44]  Ben-Dror, K. and Birk, R. (2019) Oleic Acid Ameliorates Palmitic Acid-Induced ER Stress and Inflammation Markers in Naive and Cerulein-Treated Exocrine Pancreas Cells. Bioscience Reports, 39, BSR20190054.
https://doi.org/10.1042/BSR20190054
[45]  Mateu, A., De Dios, I., Manso, M.A. and Ramudo, L. (2015) Unsaturated But Not Saturated Fatty Acids Induce Transcriptional Regulation of CCL2 in Pancreatic Acini. A Potential Role in Acute Pancreatitis. Biochimica et Biophysica Acta (BBA)— Molecular Basis of Disease, 1852, 2671-2677.
https://doi.org/10.1016/j.bbadis.2015.09.015
[46]  Wei, B.W., et al. (2021) Role of Tumor Necrosis Factor Receptor-Associated Factor 6 in Pyroptosis during Acute Pancreatitis. Molecular Medicine Reports, 24, Article No. 848.
https://doi.org/10.3892/mmr.2021.12488
[47]  Wei, B.W., et al. (2023) Inhibition of TRAF6 Improves Hyperlipidemic Acute Pancreatitis by Alleviating Pyroptosis in Vitro and in Vivo Rat Models. Biology Direct, 18, Article No. 23.
https://doi.org/10.1186/s13062-023-00380-y
[48]  Warbrick, I. and Rabkin, S.W. (2019) Hypoxia-Inducible Factor 1-Aα (HIF-1α) as a Factor Mediating the Relationship between Obesity and Heart Failure with Preserved Ejection Fraction. Obesity Reviews, 20, 701-712.
https://doi.org/10.1111/obr.12828
[49]  Ma, Y.M., et al. (2023) HIF-1α-PPARγ-MTORC1 Signaling Pathway-Mediated Autophagy Induces Inflammatory Response in Pancreatic Cells in Rats with Hyperlipidemic Acute Pancreatitis. Molecular Biology Reports, 50, 8497-8507.
https://doi.org/10.1007/s11033-023-08639-3
[50]  Carow, B. and Rottenberg, M.E. (2014) SOCS3, a Major Regulator of Infection and Inflammation. Frontiers in Immunology, 5, Article 58.
https://doi.org/10.3389/fimmu.2014.00058
[51]  Zhu, F., Guan, Y. and Zhang, R. (2017) Inhibition of JAK2 Signaling Alleviates Hyperlipidemia-Intensified Caerulin-Induced Acute Pancreatitis in Vivo. Current Molecular Medicine, 17, 381-387.
https://doi.org/10.2174/1566524018666171205123723
[52]  Yang, J., et al. (2023) Dysregulated B7H4/JAK2/STAT3 Pathway Involves in Hypertriglyceridemia Acute Pancreatitis and Is Attenuated by Baicalin. Digestive Diseases and Sciences, 68, 478-486.
https://doi.org/10.1007/s10620-022-07606-5
[53]  Wang, X.Y., et al. (2021) Baicalein Alleviates Pyroptosis and Inflammation in Hyperlipidemic Pancreatitis by Inhibiting NLRP3/Caspase-1 Pathway through the MiR-192-5p/TXNIP Axis. International Immunopharmacology, 101, Article ID: 108315.
https://doi.org/10.1016/j.intimp.2021.108315
[54]  Sen, T., et al. (2017) Diet-Driven Microbiota Dysbiosis Is Associated with Vagal Remodeling and Obesity. Physiology & Behavior, 173, 305-317.
https://doi.org/10.1016/j.physbeh.2017.02.027
[55]  Luo, Q.H., et al. (2019) Improvement of Colonic Immune Function with Soy Isoflavones in High-Fat Diet-Induced Obese Rats. Molecules, 24, Article 1139.
https://doi.org/10.3390/molecules24061139
[56]  Yu, S.S., et al. (2020) Identification of Dysfunctional Gut Microbiota through Rectal Swab in Patients with Different Severity of Acute Pancreatitis. Digestive Diseases and Sciences, 65, 3223-3237.
https://doi.org/10.1007/s10620-020-06061-4
[57]  Shamsudeen, I. and Hegele, R.A. (2022) Safety and Efficacy of Therapies for Chylomicronemia. Expert Review of Clinical Pharmacology, 15, 395-405.
https://doi.org/10.1080/17512433.2022.2094768
[58]  Wolska, A., Yang, Z.H. and Remaley, A.T. (2020) Hypertriglyceridemia: New Approaches in Management and Treatment. Current Opinion in Lipidology, 31, 331-339.
https://doi.org/10.1097/MOL.0000000000000710
[59]  Bhatt, D.L., et al. (2019) Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. The New England Journal of Medicine, 380, 11-22.
[60]  Spagnuolo, C.M. and Hegele, R.A. (2023) Recent Advances in Treating Hypertriglyceridemia in Patients at High Risk of Cardiovascular Disease with Apolipoprotein C-III Inhibitors. Expert Opinion on Pharmacotherapy, 24, 1013-1020.
https://doi.org/10.1080/14656566.2023.2206015
[61]  Gaudet, D., et al. (2015) Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia. The New England Journal of Medicine, 373, 438-447.
https://doi.org/10.1056/NEJMoa1400283
[62]  Gaudet, D., et al. (2014) Targeting APOC3 in the Familial Chylomicronemia Syndrome. The New England Journal of Medicine, 371, 2200-2206.
https://doi.org/10.1056/NEJMoa1400284
[63]  Karwatowska-Prokopczuk, E., et al. (2022) Effect of Olezarsen Targeting APOC-III on Lipoprotein Size and Particle Number Measured by NMR in Patients with Hypertriglyceridemia. Journal of Clinical Lipidology, 16, 617-625.
https://doi.org/10.1016/j.jacl.2022.06.005
[64]  Tardif, J.C., et al. (2022) Apolipoprotein C-III Reduction in Subjects with Moderate Hypertriglyceridaemia and at High Cardiovascular Risk. European Heart Journal, 43, 1401-1412.
https://doi.org/10.1093/eurheartj/ehab820
[65]  Alexander, V.J., et al. (2019) N-Acetyl Galactosamine-Conjugated Antisense Drug to APOC3 MRNA, Triglycerides and Atherogenic Lipoprotein Levels. European Heart Journal, 40, 2785-2796.
https://doi.org/10.1093/eurheartj/ehz209
[66]  Chen, W., et al. (2022) Neddylation-Mediated Degradation of HnRNPA2B1 Contributes to Hypertriglyceridemia Pancreatitis. Cell Death & Disease, 13, Article No. 863.
https://doi.org/10.1038/s41419-022-05310-w
[67]  Moggia, E., et al. (2017) Pharmacological Interventions for Acute Pancreatitis. The Cochrane Database of Systematic Reviews, 4, CD011384.
https://doi.org/10.1002/14651858.CD011384.pub2
[68]  Yang, X.M., et al. (2020) Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Frontiers in Physiology, 11, Article 614591.
https://doi.org/10.3389/fphys.2020.614591

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133