All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


Research Progress of Plant Hormones Regulating Nodule Development of Leguminous Plants

DOI: 10.12677/ije.2024.132017, PP. 129-133

Keywords: 豆科植物,共生固氮,根瘤,植物激素,生长素
Leguminous Plants
, Symbiotic Nitrogen Fixation, Nodules, Plant Hormones, Auxin

Full-Text   Cite this paper   Add to My Lib


The symbiotic nitrogen fixation system formed by leguminous plants and nitrogen-fixing microorganisms enables plants to use nitrogen in the atmosphere, thus reducing the demand of plants for nitrogen content in the soil. Rational use of symbiotic nitrogen fixation can reduce the amount of nitrogen fertilizer used in agricultural production, which is of great significance to the sustainable development of agriculture. The formation and establishment of symbiotic nitrogen fixation system are regulated by multiple signals, among which plant hormones are a key influencing factor and play an important role in the whole process of symbiotic nitrogen fixation system establishment. In this paper, the effects of plant hormones on the formation and development of leguminous plant nodules were summarized, which provided reference for subsequent related research.


[1]  Abdiev, A., Khaitov, B., Toderich, K.N., et al. (2019) Growth, Nutrient Uptake and Yield Parameters of Chickpea (Cicer arietinum L.) Enhance by Rhizobium and Azotobacter Inoculations in Saline Soil. Journal of Plant Nutrition, 42, 2703-2714.
[2]  Xu, P., Han, L., He, J.Z., et al. (2017) Research Advance on Molecular Ecology of Asymbiotic Nitrogen Fixation Microbes. Chinese Journal of Applied Ecology, 28, 3440-3450.
[3]  Lillo, C., Lea, U.S. and Ruoff, P. (2008) Nutrient Depletion as a Key Factor for Manipulating Gene Expression and Product Formation in Different Branches of the Flavonoid Pathway. Plant, Cell & Environment, 31, 587-601.
[4]  Gage, D.J. (2004) Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia during Nodulation of Temperate Legumes. Microbiology and Molecular Biology Reviews, 68, 280-300.
[5]  Jones, K.M., Kobayashi, H., Davies, B.W., et al. (2007) How Rhizobial Symbionts Invade Plants: The Sinorhizobium-Medicago Model. Nature Reviews Microbiology, 5, 619-633.
[6]  Haag, A.F., Arnold, M.F., Myka, K.K., et al. (2013) Molecular Insights into Bacteroid Development during Rhizobium-Legume Symbiosis. FEMS Microbiology Reviews, 37, 364-383.
[7]  Oldroyd, G.E.D. (2013) Speak, Friend, and Enter: Signalling Systems That Promote Beneficial Symbiotic Associations in Plants. Nature Reviews Microbiology, 11, 252-263.
[8]  Calvert, H.E., Pence, M.K., Pierce, M.L., et al. (1984) Anatomical Analysis of the Development and Distribution of Rhizobium Infections in Soybean Roots. Canadian Journal of Botany, 62, 2375-2384.
[9]  Kereszt, A., Mergaert, P., Kondorosi, E. (2011) Bacteroid Development in Legume Nodules: Evolution of Mutual Benefit or of Sacrificial Victims? Molecular Plant-Microbe Interactions, 24, 1300-1309.
[10]  Garg, N., Singla, R. and Geetanjali (2004) Nitrogen Fixation and Carbon Metabolism in Legume Nodules. Indian Journal of Experimental Biology, 42, 138-142.
[11]  Ferguson, B.J., Indrasumunar, A., Hayashi, S., et al. (2010) Molecular Analysis of Legume Nodule Development and Autoregulation. Journal of Integrative Plant Biology, 52, 61-76.
[12]  Oldroyd, G.E. and Downie, J.A. (2008) Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes. Annual Review of Plant Biology, 59, 519-546.
[13]  Nadzieja, M., Kelly, S., Stougaard, J. and Reid, D. (2018) Epidermal Auxin Biosynthesis Facilitates Rhizobial Infection in Lotus Japonicus. The Plant Journal, 95, 101-111.
[14]  Wang, Y., Yang, W., Zuo, Y., et al. (2019) GmYUC2a Mediates Auxin Biosynthesis during Root Development and Nodulation in Soybean. Journal of Experimental Botany, 70, 3165-3176.
[15]  Roy, S., Robson, F., Lilley, J., et al. (2017) MtLAX2, a Functional Homologue of the Arabidopsis Auxin Influx Transporter AUX1, Is Required for Nodule Organogenesis. Plant Physiology, 174, 326-338.
[16]  Velandia, K., Reid, J.B. and Foo, E. (2022) Right Time, Right Place: The Dynamic Role of Hormones in Rhizobial Infection and Nodulation of Legumes. Plant Communications, 3, Article ID: 100327.
[17]  Shrestha, A., Zhong, S., Therrien, J., et al. (2021) Lotus Japonicus Nuclear Factor YA1, a Nodule Emergence Stage-Specific Regulator of Auxin Signalling. New Phytologist, 229, 1535-1552.
[18]  Cai, Z., Wang, Y., Zhu, L., et al. (2017) GmTIR1/GmAFB3-Based Auxin Perception Regulated by MiR393 Modulates Soybean Nodulation. New Phytologist, 215, 672-686.
[19]  Gao, Z., Chen, Z., Cui, Y., et al. (2021) GmPIN-Dependent Polar Auxin Transport Is Involved in Soybean Nodule Development. Plant Cell, 33, 2981-3003.
[20]  Reid, D., Liu, H., Kelly, S., et al. (2018) Dynamics of Ethylene Production in Response to Compatible Nod Factor. Plant Physiology, 176, 1764-1772.
[21]  Berrabah, F., Balliau, T., A?t-Salem, E.H., et al. (2018) Control of the Ethylene Signaling Pathway Prevents Plant Defenses during Intracellular Accommodation of the Rhizobia. New Phytologist, 219, 310-323.
[22]  Mcadam, E.L., Reid, J.B. and Foo, E. (2018) Gibberellins Promote Nodule Organogenesis But Inhibit the Infection Stages of Nodulation. Journal of Experimental Botany, 69, 2117-2130.
[23]  Chu, X., Su, H., Hayashi, S., et al. (2022) Spatiotemporal Changes in Gibberellin Content Are Required for Soybean Nodulation. New Phytologist, 234, 479-493.
[24]  Kim, G.B., Son, S.U., Yu, H.J. and Mun, J.H. (2019) MtGA2ox10 Encoding C20-GA2-Oxidase Regulates Rhizobial Infection and Nodule Development in Medicago truncatula. Scientific Reports, 9, Article No. 5952.
[25]  Akamatsu, A., Nagae, M., Nishimura, Y., et al. (2021) Endogenous Gibberellins Affect Root Nodule Symbiosis via Transcriptional Regulation of Nodule Inception in Lotus Japonicus. The Plant Journal, 105, 1507-1520.
[26]  Reid, D., Nadzieja, M., Novák, O., et al. (2017) Cytokinin Biosynthesis Promotes Cortical Cell Responses during Nodule Development. Plant Physiology, 175, 361-375.
[27]  Jarzyniak, K., Banasiak, J., Jamruszka, T., et al. (2021) Early Stages of Legume-Rhizobia Symbiosis Are Controlled by ABCG-Mediated Transport of Active Cytokinins. Nature Plants, 7, 428-436.
[28]  Gauthier-Coles, C., White, R.G. and Mathesius, U. (2018) Nodulating Legumes Are Distinguished by a Sensitivity to Cytokinin in the Root Cortex Leading to Pseudonodule Development. Frontiers in Plant Science, 9, Article 1901.
[29]  Chen, J., Wang, Z., Wang, L., et al. (2022) The B-Type Response Regulator GmRR11d Mediates Systemic Inhibition of Symbiotic Nodulation. Nature Communications, 13, Article No. 7661.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413