|
基于肠道菌群探讨中医药防治高血压合并2型糖尿病
|
Abstract:
高血压是以体循环动脉压升高为主要临床表现的心血管综合征,是临床上常见的慢性疾病。高血压和2型糖尿病是两种互相影响的代谢性疾病。高血压是糖尿病的危险因素,并且通常先于糖尿病的发展,二者共存会对多器官造成严重损害,而发生心血管疾病的风险更是普通人群的4~8倍。肠道菌群在新生儿出生后便存在于肠道中,主要包括厚壁菌门和拟杆菌门。肠道微生物参与人体代谢时会产生氧化三甲胺、脂多糖、短链脂肪酸等物质,这些代谢产物可在肠外发挥一系列作用。高血压及糖尿病的发生发展与肠道微生物密切相关,肠道菌群已成为新的治疗靶点。本文基于肠道菌群探讨中医药对高血压合并2型糖尿病的防治,通过探究并阐明肠道菌群与高血压合并2型糖尿病的相关性,为中医药防治该合并症提供新的思路。
Hypertension is a cardiovascular syndrome with elevated systemic arterial pressure as the main clinical manifestation. It is a common chronic disease in clinic. Hypertension and type 2 diabetes are two metabolic diseases that affect each other. Hypertension is a risk factor for diabetes, and usually precedes the development of diabetes. The coexistence of the two can cause serious damage to multiple organs, and the risk of cardiovascular disease is 4 to 8 times higher than that of the general population. Intestinal flora exists in the intestine after birth, mainly including Firmicutes and Bacteroidetes. Intestinal microorganisms produce trimethylamine oxide, lipopolysaccharide, short-chain fatty acids and other substances when they participate in human metabolism. These metabolites can play a series of roles outside the intestine. The occurrence and development of hypertension and diabetes are closely related to intestinal microorganisms, and intestinal flora has become a new therapeutic target. Based on the intestinal flora, this paper discusses the prevention and treatment of hypertension combined with type 2 diabetes mellitus by traditional Chinese medicine. By exploring and clarifying the correlation between intestinal flora and hypertension combined with type 2 diabetes mellitus, it provides new ideas for the prevention and treatment of this complication by traditional Chinese medicine.
[1] | 何彦虎, 金华, 刘志军, 等. 基于肠道菌群与代谢水平的相关性论高血压病理机制[J]. 中国微生态学杂志, 2022, 34(9): 1094-1098. |
[2] | 孙芹, 田伟帆, 罗婷婷, 等. 2023年世界卫生组织《全球高血压报告》解读[J]. 中国胸心血管外科临床杂志, 2024, 31(2): 203-208.. |
[3] | 练有伟, 刘敏. 生辰的五运六气属性与2型糖尿病发病的相关性研究[J]. 广州中医药大学学报, 2024, 41(2): 291-298. |
[4] | 农惠芸, 宁焕, 许霞, 等. 2型糖尿病合并高血压列线图预测模型构建[J]. 广西医科大学学报, 2023, 40(12): 2035-2042. |
[5] | 魏勇军, 李晓琪, 戢博阳, 等. 肠道菌群与宿主关系解析及肠道菌群调控/合成研究进展[J]. 中国科学: 生命科学, 2022, 52(2): 249-265. |
[6] | 刘荣魁, 刘宁. 高血压病合并糖尿病的中医辨治[J]. 河北中医, 2004, 26(7): 513-514. |
[7] | 曹强, 金华, 刘志军, 等. 高血压合并糖尿病辨证思路探析[J]. 中国中医药科技, 2015, 22(5): 539-541. |
[8] | 谢军朋, 赵连任. 高血压合并糖尿病心脑血管病患者的中西药结合治疗研究[J]. 中医临床研究, 2016, 8(11): 69-70. |
[9] | 车钰文, 韩鹏鹏, 焦扬, 等. 基于文献研究的卫气虚证内涵及其诊断标准的思考[J]. 中医杂志, 2023, 64(4): 354-357. |
[10] | Wang, J., Zhu, N., Su, X., et al. (2023) Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells, 12, Article 793. https://doi.org/10.3390/cells12050793 |
[11] | 庄欣, 李鸿真, 朱明建, 等. 从脾论治心血管疾病及其与肠道菌群的关系[J]. 中西医结合心脑血管病杂志, 2023, 21(13): 2501-2504. |
[12] | Jia, G. and Sowers, J.R. (2021) Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension, 78, 1197-1205. https://doi.org/10.1161/HYPERTENSIONAHA.121.17981 |
[13] | Koenen, M., Hill, M.A., Cohen, P. and Sowers, J.R. (2021) Obesity, Adipose Tissue and Vascular Dysfunction. Circulation Research, 128, 951-968. https://doi.org/10.1161/CIRCRESAHA.121.318093 |
[14] | Ge, X., Zheng, L., Zhuang, R., et al. (2020) The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose-Response Meta-Analysis. Advances in Nutrition, 11, 66-76. https://doi.org/10.1093/advances/nmz064 |
[15] | Jiang, S., Shui, Y., Cui, Y., et al. (2021) Gut Microbiota Dependent Trimethylamine N-Oxide Aggravates Angiotensin II-Induced Hypertension. Redox Biology, 46, Article ID: 102115. https://doi.org/10.1016/j.redox.2021.102115 |
[16] | Shan, Z., Sun, T., Huang, H., et al. (2017) Association between Microbiota-Dependent Metabolite Trimethylamine-N-Oxide and Type 2 Diabetes. The American Journal of Clinical Nutrition, 106, 888-894. https://doi.org/10.3945/ajcn.117.157107 |
[17] | Kalagi, N.A., Thota, R.N., Stojanovski, E., et al. (2022) Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case Control Study. Nutrients, 14, Article 2093. https://doi.org/10.3390/nu14102093 |
[18] | Battson, M.L., Lee, D.M., Weir, T.L. and Gentile, C.L. (2018) The Gut Microbiota as a Novel Regulator of Cardiovascular Function and Disease. The Journal of Nutritional Biochemistry, 56, 1-15. https://doi.org/10.1016/j.jnutbio.2017.12.010 |
[19] | Grylls, A., Seidler, K. and Neil, J. (2021) Link between Microbiota and Hypertension: Focus on LPS/TLR4 Pathway in Endothelial Dysfunction and Vascular Inflammation, and Therapeutic Implication of Probiotics. Biomedicine & Pharmacotherapy, 137, Article ID: 111334. https://doi.org/10.1016/j.biopha.2021.111334 |
[20] | Yao, B., Pan, B., Tian, T., et al. (2022) Baihu Renshen Decoction Ameliorates Type 2 Diabetes Mellitus in Rats Through Affecting Gut Microbiota Enhancing Gut Permeability and Inhibiting TLR4/NF-κB-Mediated Inflammatory Response. Frontiers in Cellular and Infection Microbiology, 12, Article 1051962. https://doi.org/10.3389/fcimb.2022.1051962 |
[21] | Portincasa, P., Bonfrate, L., Vacca, M., et al. (2022) Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, 23, Article 1105. https://doi.org/10.3390/ijms23031105 |
[22] | Verhaar, B. J. H., Prodan, A., Nieuwdorp, M. and Muller, M. (2020) Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients, 12, Article 2982. https://doi.org/10.3390/nu12102982 |
[23] | Toral, M., Robles-Vera, I., De La Visitación, N., et al. (2019) Critical Role of the Interaction Gut Microbiota—Sympathetic Nervous System in the Regulation of Blood Pressure. Frontiers in Physiology, 10, Article 231. https://doi.org/10.3389/fphys.2019.00231 |
[24] | De La Cuesta-Zuluaga, J., Mueller, N.T., áLvarez-Quintero, R., et al. (2018) Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients, 11, Article 51. https://doi.org/10.3390/nu11010051 |
[25] | Li, Q., Chang, Y., Zhang, K., et al. (2020) Implication of the Gut Microbiome Composition of Type 2 Diabetic Patients from Northern China. Scientific Reports, 10, Article No. 5450. https://doi.org/10.1038/s41598-020-62224-3 |
[26] | 程玥凤, 张文顺, 石岩. 短链脂肪酸在2型糖尿病中的发病机制与中医药应用展望[J/OL]. 辽宁中医药大学学报, 2024: 1-11. http://kns.cnki.net/kcms/detail/21.1543.R.20240124.1448.008.html, 2024-05-07. |
[27] | Ding, H., Xu, Y., Cheng, Y., et al. (2023) Gut Microbiome Profile of Chinese Hypertension Patients with and without Type 2 Diabetes Mellitus. BMC Microbiology, 23, Article No. 254. https://doi.org/10.1186/s12866-023-02967-x |
[28] | Canyelles, M., Borràs, C., Rotllan, N., et al. (2023) Gut Microbiota-Derived TMAO: A Causal Factor Promoting Atherosclerotic Cardiovascular Disease? International Journal of Molecular Sciences, 24, Article 1940. https://doi.org/10.3390/ijms24031940 |
[29] | Li, B., Wang, H.Y., Huang, J.H., et al. (2022) Polysaccharide, the Active Component of Dendrobium Officinale, Ameliorates Metabolic Hypertension in Rats via Regulating Intestinal Flora-SCFAs-Vascular Axis. Frontiers in Pharmacology, 13, Article 935714. https://doi.org/10.3389/fphar.2022.935714 |
[30] | Chen, X., Chen, C. and Fu, X. (2023) Dendrobium Officinale Polysaccharide Alleviates Type 2 Diabetes Mellitus by Restoring Gut Microbiota and Repairing Intestinal Barrier via the LPS/TLR4/TRIF/NF-KB Axis. Journal of Agricultural and Food Chemistry, 71, 11929-11940. https://doi.org/10.1021/acs.jafc.3c02429 |
[31] | Du, F., Huang, R., Lin, D., et al. (2021) Resveratrol Improves Liver Steatosis and Insulin Resistance in Non-Alcoholic Fatty Liver Disease in Association with the Gut Microbiota. Frontiers in Microbiology, 12, Article 611323. https://doi.org/10.3389/fmicb.2021.611323 |
[32] | Yang, Z., Wang, Q., Liu, Y., et al. (2023) Gut Microbiota and Hypertension: Association, Mechanisms and Treatment. Clinical and Experimental Hypertension, 45, Article ID: 2195135. https://doi.org/10.1080/10641963.2023.2195135 |
[33] | Shi, Y., Hu, J., Geng, J., et al. (2018) Berberine Treatment Reduces Atherosclerosis by Mediating Gut Microbiota in ApoE-/-Mice. Biomedicine & Pharmacotherapy, 107, 1556-1563. https://doi.org/10.1016/j.biopha.2018.08.148 |
[34] | Yang, S., Cao, S., Li, C., et al. (2022) Berberrubine, a Main Metabolite of Berberine, Alleviates Non-Alcoholic Fatty Liver Disease via Modulating Glucose and Lipid Metabolism and Restoring Gut Microbiota. Frontiers in Pharmacology, 13, Article 913378. https://doi.org/10.3389/fphar.2022.913378 |
[35] | Wu, J., Nakashima, S., Nakamura, S. and Matsuda, H. (2020) Effects of Sanoshashinto on Left Ventricular Hypertrophy and Gut Microbiota in Spontaneously Hypertensive Rats. Journal of Natural Medicines, 74, 482-486. https://doi.org/10.1007/s11418-020-01387-9 |
[36] | Ma, X.C., Xiong, X.J., Mo, Y., et al. (2020) Study on Changes of Intestinal Microflora in Spontaneously Hypertensive Rats Based on 16S RDNA Sequencing and Intervention of Traditional Chinese Medicine. Archive of Journal of Traditional Chinese Medicine, 38, 71-74. |
[37] | Chi, H., Wang, D., Chen, M., et al. (2021) Shaoyao Decoction Inhibits Inflammation and Improves Intestinal Barrier Function in Mice with Dextran Sulfate Sodium-Induced Colitis. Frontiers in Pharmacology, 12, Article 524287. https://doi.org/10.3389/fphar.2021.524287 |
[38] | Lau, E., Neves, J.S., Ferreira-Magalh?es, M., et al. (2019) Probiotic Ingestion, Obesity, and Metabolic-Related Disorders: Results from NHANES, 1999-2014. Nutrients, 11, Article 1482. https://doi.org/10.3390/nu11071482 |