全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

吹胀式平板集热/蒸发器流道结构仿真分析及实验研究
Roll-Bond Flat Plate Collector/Evaporator Flow Channel Structure Simulation Analysis and Experimental Study

DOI: 10.12677/mos.2024.133190, PP. 2069-2078

Keywords: 数值模拟,集热/蒸发器,流道结构,制热COP,集热效率
Numerical Simulation
, Collector/Evaporator, Flow Channel Structure, Heating COP, Heat Collection Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于Fluent流体力学仿真软件,对蛇形、矩形以及六边形三种流道单元进行数值模拟,得到了各自对应的流道单元温度场与压力场分布云图。仿真结果表明:相较于矩形流道和传统的蛇形流道而言,六边形流道拥有更好的传热性能和更小的流动压力损失,温度分布也更均匀,采用该结构可以使集热/蒸发器表面平均温度降低。除了采用数值模拟方法之外,集热/蒸发器流道结构的研究还需要结合实验来看,本文采用控制变量法对不同流道结构下的热泵系统实际性能进行测试分析。实验结果表明:与矩形和蛇形两种流道结构相比,采用六边形流道结构的集热/蒸发器可以有效提高系统的制热COP和集热效率,分别提高了6.1%、16.4%和7.4%、20.6%。综合来讲,六边形流道结构是最优结构,该研究可为集热/蒸发器的结构优化提供借鉴。
Based on Fluent fluid dynamics simulation software, three types of flow channel cells, namely, serpentine, rectangular and hexagonal, were numerically simulated, and the temperature and pressure field distributions of the corresponding flow channel cells were obtained. The simulation results indicate that the hexagonal flow channel owns better Heat transfer property, smaller flow pressure loss and more uniform temperature distribution than the rectangular flow channel and the traditional serpentine flow channel, and the use of this structure can reduce the average temperature of the collector/evaporator surface. In addition to using numerical simulation methods, the study of collector/evaporator flow channel structures needs to be viewed in conjunction with experiments. In this paper, the control variable method is used to test and analyze the actual performance of the heat pump system under different flow channel structures. The experimental results show that the collector/evaporator with hexagonal flow channel structure can effectively improve the system’s heating COP and collector efficiency by 6.1%, 16.4% and 7.4%, 20.6%, respectively, compared with the two flow channel structures of rectangle and serpentine. In general terms, the hexagonal flow channel structure is the prime structure, and this study can provide a reference for the structure optimization of the collector/evaporator.

References

[1]  中国建筑节能协会, 重庆大学城乡建设与发展研究院. 中国建筑能耗与碳排放研究报告(2022年) [J]. 建筑, 2023(2): 57-69.
[2]  Mitigation, C.C. (2011) IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Renewable Energy, 20, 1-24.
[3]  卫敏涛. 冬季寒冷条件下太阳能-空气源热泵热水器的数值模拟[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2013.
[4]  黄文洪, 陈武, 丁德锋, 等. 并联非直膨式太阳能-空气源热泵热水系统的热力学分析[C]//福建省科协第十六届学术年会福建省制冷学会分会场——福建省制冷学会2016年学术年会论文集. 北京: 中国学术期刊(光盘版)电子杂志社, 2016: 135-142.
[5]  侯隆澍, 全贞花, 杜伯尧, 等. 新型太阳能-空气双热源直膨热泵系统运行性能研究[J]. 建筑科学, 2022, 38(2): 153-159.
[6]  梁振南, 秦红, 卜其辉. 太阳能-空气能集热蒸发器现状与发展方向分析[J]. 太阳能, 2008(12): 22-25.
[7]  荣维来, 许树学, 马国远, 等. 直膨式太阳能空气源热泵制热的实验研究[J]. 制冷与空调(四川), 2022, 36(2): 243-248.
[8]  徐国英, 张小松. 复合热源热泵系统集热/蒸发器的模型[J]. 工程热物理学报, 2006, 27(z1): 61-64.
[9]  Ma, K., Wang, Z., Li, X., et al. (2021) Structural Optimization of Collector/Evaporator of Direct-Expansion Solar/Air-Assisted Heat Pump. Alexandria Engineering Journal, 60, 387-392.
https://doi.org/10.1016/j.aej.2020.08.039
[10]  Hermes, C.J., Melo, C., Negr?o, C.O. (2008) A Numerical Simulation Model for Plate-Type, Roll-Bond Evaporators. International Journal of Refrigeration, 31, 335-347.
https://doi.org/10.1016/j.ijrefrig.2007.05.005
[11]  刘杨. 运用fluent软件对板式换热器性能的数值分析[J]. 广州化工, 2013, 41(13): 221-223, 285.
[12]  左寅虎, 杨雷. 基于CFD的泵开启台数对一体化泵站水力特性影响研究[J]. 建模与仿真, 2023, 12(6): 5655-5665.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133