全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肾脏缺血再灌注损伤与铁死亡关系的研究进展
Research Progress on the Relationship between Kidney Ischemia-Reperfusion Injury and Ferroptosis

DOI: 10.12677/acm.2024.1451418, PP. 227-239

Keywords: 肾脏缺血再灌注损伤,铁死亡,机制,信号通路,脂质过氧化,治疗
Kidney Ischemia-Reperfusion Injury
, Ferroptosis, Mechanism, Signaling Pathway, Lipid Peroxidation, Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

肾脏缺血再灌注损伤(Ischemia-Reperfusion Injury, IRI)是导致急性肾损伤(Acute kidney injury, AKI),影响肾移植效果及心脏手术后肾功能恢复的关键因素。该过程由缺血阶段的氧气和营养物质供应不足以及随后再灌注阶段的氧化应激和炎症反应引发的细胞与组织损伤组成。铁死亡,一种与铁代谢紊乱有关的细胞死亡形式,其通过铁依赖性脂质过氧化导致细胞死亡,近年来,研究发现铁死亡在多种肾脏疾病的发病机制中扮演着重要角色,尤其是在肾脏IRI中。本综述旨在探讨肾脏IRI与铁死亡机制的联系,并总结当前通过抑制铁死亡对肾脏IRI治疗的研究进展,旨在为肾脏IRI的预防与治疗提供新的理论支撑。
Kidney ischemia-reperfusion injury (IRI) is a key factor leading to acute kidney injury (AKI), affecting kidney transplant outcomes and post-cardiac surgery kidney function recovery. This process consists of cell and tissue damage triggered by the lack of oxygen and nutrient supply during the ischemic phase and oxidative stress and inflammatory responses during the subsequent reperfusion phase. Ferroptosis, a form of cell death associated with dysregulated iron metabolism that leads to cell death through iron-dependent lipid peroxidation, has recently been found to play a significant role in the pathogenesis of various kidney diseases, especially in kidney IRI. This review aims to explore the connection between kidney IRI and the mechanism of ferroptosis, and to summarize current research progress in treating kidney IRI by inhibiting ferroptosis, providing new theoretical support for the prevention and treatment of kidney IRI.

References

[1]  Soares, R., Losada, D.M., Jordani, M.C., évora, P. and Castro-e-Silva, O. (2019) Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. International Journal of Molecular Sciences, 20, Article 5034.
https://doi.org/10.3390/ijms20205034
[2]  Collard, C.D. and Gelman, S. (2001) Pathophysiology, Clinical Manifestations, and Prevention of Ischemia-Reperfusion Injury. Anesthesiology, 94, 1133-1138.
https://doi.org/10.1097/00000542-200106000-00030
[3]  Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[4]  Xie, G.L., Zhu, L., Zhang, Y.M., Zhang, Q.N. and Yu, Q. (2017) Change in Iron Metabolism in Rats after Renal Ischemia/Reperfusion Injury. PLOS ONE, 12, e0175945.
https://doi.org/10.1371/journal.pone.0175945
[5]  Hammad, F.T., Al-Salam, S., Ahmad, R., et al. (2023) The Effect of Nerolidol Renal Dysfunction Following Ischemia-Reperfusion Injury in the Rat. Nutrients, 15, Article 455.
https://doi.org/10.3390/nu15020455
[6]  Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. and Telser, J. (2007) Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. The International Journal of Biochemistry & Cell Biology, 39, 44-84.
https://doi.org/10.1016/j.biocel.2006.07.001
[7]  Welbourn, C.R., Goldman, G., Paterson, I.S., Valeri, C.R., Shepro, D. and Hechtman, H.B. (1991) Pathophysiology of Ischaemia Reperfusion Injury: Central Role of the Neutrophil. British Journal of Surgery, 78, 651-655.
https://doi.org/10.1002/bjs.1800780607
[8]  Halliwell, B. and Gutteridge, J.M. (1986) Oxygen Free Radicals and Iron in Relation to Biology and Medicine: Some Problems and Concepts. Archives of Biochemistry and Biophysics, 246, 501-514.
https://doi.org/10.1016/0003-9861(86)90305-X
[9]  Hernandez, L.A., Grisham, M.B. and Granger, D.N. (1987) A Role for Iron in Oxidant-Mediated Ischemic Injury to Intestinal Microvasculature. American Journal of Physiology-Gastrointestinal and Liver Physiology, 253, G49-G53.
https://doi.org/10.1152/ajpgi.1987.253.1.G49
[10]  Slater, T.F., Cheeseman, K.H., Davies, M.J., Proudfoot, K. and Xin, W. (1987) Free Radical Mechanisms in Relation to Tissue Injury. Proceedings of the Nutrition Society, 46, 1-12.
https://doi.org/10.1079/PNS19870003
[11]  Greene, E.L. and Paller, M.S. (1991) Oxygen Free Radicals in Acute Renal Failure. Mineral and Electrolyte Metabolism, 17, 124-132.
[12]  Li, D. and Wu, M. (2021) Pattern Recognition Receptors in Health and Diseases. Signal Transduction and Targeted Therapy, 6, Articke 291.
https://doi.org/10.1038/s41392-021-00687-0
[13]  Wicherska-Paw?Owska, K., Wróbel, T. and Rybka, J (2021) Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. International Journal of Molecular Sciences, 22, Article 13397.
https://doi.org/10.3390/ijms222413397
[14]  Wu, H., Chen, G., Wyburn, K.R., et al. (2007) TLR4 Activation Mediates Kidney Ischemia/Reperfusion Injury. Journal of Clinical Investigation, 117, 2847-2859.
https://doi.org/10.1172/JCI31008
[15]  Rusai, K., Sollinger, D., Baumann, M., et al. (2010) Toll-Like Receptors 2 and 4 in Renal Ischemia/Reperfusion Injury. Pediatric Nephrology, 25, 853-860.
https://doi.org/10.1007/s00467-009-1422-4
[16]  Kawasaki, T. and Kawai, T. (2014) Toll-Like Receptor Signaling Pathways. Frontiers in Immunology, 5, Article 461.
https://doi.org/10.3389/fimmu.2014.00461
[17]  Su, X., Liu, B., Wang, S., et al. (2022) NLRP3 Inflammasome: A Potential Therapeutic Target to Minimize Renal Ischemia/Reperfusion Injury during Transplantation. Transplant Immunology, 75, Article 101718.
https://doi.org/10.1016/j.trim.2022.101718
[18]  Howard, M.C., Nauser, C.L., Farrar, C.A. and Sacks, S.H. (2021) Complement in Ischaemia-Reperfusion Injury and Transplantation. Seminars in Immunopathology, 43, 789-797.
https://doi.org/10.1007/s00281-021-00896-3
[19]  Klausner, J.M., Paterson, I.S., Valeri, C.R., Shepro, D. and Hechtman, H.B. (1988) Limb Ischemia-Induced Increase in Permeability Is Mediated by Leukocytes and Leukotrienes. Annals of Surgery, 208, 755-760.
https://doi.org/10.1097/00000658-198812000-00014
[20]  Seekamp, A., Mulligan, M.S., Till, G.O. and Ward, P.A. (1993) Requirements for Neutrophil Products and L-Arginine in Ischemia-Reperfusion Injury. American Journal of Pathology, 142, 1217-1226.
[21]  Kurose, I., anderson, D.C., Miyasaka, M., et al. (1994) Molecular Determinants of Reperfusion-Induced Leukocyte Adhesion and Vascular Protein Leakage. Circulation Research, 74, 336-343.
https://doi.org/10.1161/01.RES.74.2.336
[22]  Palmblad, J., Malmsten, C.L., Udén, A.M., R?dmark, O., Engstedt, L. and Samuelsson, B (1981) Leukotriene B4 Is a Potent and Stereospecific Stimulator of Neutrophil Chemotaxis and Adherence. Blood, 58, 658-661.
https://doi.org/10.1182/blood.V58.3.658.658
[23]  Kubes, P., Ibbotson, G., Russell, J., Wallace, J.L. and Granger, D.N. (1990) Role of Platelet-Activating Factor in Ischemia/Reperfusion-Induced Leukocyte Adherence. American Journal of Physiology-Gastrointestinal and Liver Physiology, 259, G300-G305.
https://doi.org/10.1152/ajpgi.1990.259.2.G300
[24]  Granger, D.N., Kvietys, P.R. and Perry, M.A. (1993) Leukocyte-Endothelial Cell Adhesion Induced by Ischemia and Reperfusion. Canadian Journal of Physiology and Pharmacology, 71, 67-75.
https://doi.org/10.1139/y93-011
[25]  Panés, J., Perry, M. and Granger, D.N. (1999) Leukocyte-Endothelial Cell Adhesion: Avenues for Therapeutic Intervention. British Journal of Pharmacology, 126, 537-550.
https://doi.org/10.1038/sj.bjp.0702328
[26]  Windsor, A.C., Mullen, P.G., Fowler, A.A. and Sugerman, H.J. (1993) Role of the Neutrophil in Adult Respiratory Distress Syndrome. British Journal of Surgery, 80, 10-17.
https://doi.org/10.1002/bjs.1800800106
[27]  Rabb, H., Daniels, F., O’Donnell, M., et al. (2000) Pathophysiological Role of T Lymphocytes in Renal Ischemia-Reperfusion Injury in Mice. American Journal of Physiology-Renal Physiology, 279, F525-F531.
https://doi.org/10.1152/ajprenal.2000.279.3.F525
[28]  Martina, M.N., Noel, S., Bandapalle, S., Hamad, A.R. and Rabb, H. (2014) T Lymphocytes and Acute Kidney Injury: Update. Nephron Clinical Practice, 127, 51-55.
https://doi.org/10.1159/000363719
[29]  Savransky, V., Molls, R.R., Burne-Taney, M., Chien, C.C., Racusen, L. and Rabb, H. (2006) Role of the T-Cell Receptor in Kidney Ischemia-Reperfusion Injury. Kidney International, 69, 233-238.
https://doi.org/10.1038/sj.ki.5000038
[30]  Hochegger, K., Sch?tz, T., Eller, P., et al. (2007) Role of Alpha/Beta and Gamma/Delta T Cells in Renal Ischemia-Reperfusion Injury. American Journal of Physiology-Renal Physiology, 293, F741-F747.
https://doi.org/10.1152/ajprenal.00486.2006
[31]  Fan, H., Liu, J., Sun, J., Feng, G. and Li, J. (2023) Advances in the Study of B Cells in Renal Ischemia-Reperfusion Injury. Frontiers in Immunology, 14, Article 1216094.
https://doi.org/10.3389/fimmu.2023.1216094
[32]  Lucchesi, B.R. (1994) Complement, Neutrophils and Free Radicals: Mediators of Reperfusion Injury. Arzneimittelforschung, 44, 420-432.
[33]  Kirschfink, M. (1997) Controlling the Complement System in Inflammation. Immunopharmacology, 38, 51-62.
https://doi.org/10.1016/S0162-3109(97)00057-X
[34]  Collard, C.D., Lekowski, R., Jordan, J.E., Agah, A. and Stahl, G.L. (1999) Complement Activation Following Oxidative Stress. Molecular Immunology, 36, 941-948.
https://doi.org/10.1016/S0161-5890(99)00116-9
[35]  Stevens, J.H., O’Hanley, P., Shapiro, J.M., et al. (1986) Effects of Anti-C5a Antibodies on the Adult Respiratory Distress Syndrome in Septic Primates. Journal of Clinical Investigation, 77, 1812-1816.
https://doi.org/10.1172/JCI112506
[36]  Olson, L.M., Moss, G.S., Baukus, O. and Das Gupta, T.K. (1985) The Role of C5 in Septic Lung Injury. Annals of Surgery, 202, 771-776.
https://doi.org/10.1097/00000658-198512000-00018
[37]  Nauta, R.J., Tsimoyiannis, E., Uribe, M., Walsh, D.B., Miller, D. and Butterfield, A. (1991) The Role of Calcium Ions and Calcium Channel Entry Blockers in Experimental Ischemia-Reperfusion-Induced Liver Injury. Annals of Surgery, 213, 137-142.
https://doi.org/10.1097/00000658-199102000-00008
[38]  MacDonald, A.C. and Howlett, S.E. (2008) Differential Effects of the Sodium Calcium Exchange Inhibitor, KB-R7943, on Ischemia and Reperfusion Injury in Isolated Guinea Pig Ventricular Myocytes. European Journal of Pharmacology, 580, 214-223.
https://doi.org/10.1016/j.ejphar.2007.10.055
[39]  Roseborough, G., Gao, D., Chen, L., et al. (2006) The Mitochondrial K-ATP Channel Opener, Diazoxide, Prevents Ischemia-Reperfusion Injury in the Rabbit Spinal Cord. The American Journal of Pathology, 168, 1443-1451.
https://doi.org/10.2353/ajpath.2006.050569
[40]  Grisham, M.B., Granger, D.N. and Lefer, D.J. (1998) Modulation of Leukocyte-Endothelial Interactions by Reactive Metabolites of Oxygen and Nitrogen: Relevance to Ischemic Heart Disease. Free Radical Biology and Medicine, 25, 404-433.
https://doi.org/10.1016/S0891-5849(98)00094-X
[41]  Bernardi, P. and Petronilli, V. (1996) The Permeability Transition Pore as a Mitochondrial Calcium Release Channel: A Critical Appraisal. Journal of Bioenergetics and Biomembranes, 28, 131-138.
https://doi.org/10.1007/BF02110643
[42]  Halestrap, A.P., Kerr, P.M., Javadov, S. and Woodfield, K.Y. (1998) Elucidating the Molecular Mechanism of the Permeability Transition Pore and Its Role in Reperfusion Injury of the Heart. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1366, 79-94.
https://doi.org/10.1016/S0005-2728(98)00122-4
[43]  Baines, C.P., Kaiser, R.A., Purcell, N.H., et al. (2005) Loss of Cyclophilin D Reveals a Critical Role for Mitochondrial Permeability Transition in Cell Death. Nature, 434, 658-662.
https://doi.org/10.1038/nature03434
[44]  Yang, H., Li, R., Zhang, L., et al. (2019) P53-Cyclophilin D Mediates Renal Tubular Cell Apoptosis in Ischemia-Reperfusion-Induced Acute Kidney Injury. American Journal of Physiology-Renal Physiology, 317, F1311-F1317.
https://doi.org/10.1152/ajprenal.00072.2019
[45]  Lemoine, S., Pillot, B., Augeul, L., et al. (2017) Dose and Timing of Injections for Effective Cyclosporine a Pretreatment before Renal Ischemia Reperfusion in Mice. PLOS ONE, 12, e0182358.
https://doi.org/10.1371/journal.pone.0182358
[46]  Ji, X., Chu, L., Su, D., et al. (2023) MRPL12-ANT3 Interaction Involves in Acute Kidney Injury via Regulating MPTP of Tubular Epithelial Cells. iScience, 26, Article 106656.
https://doi.org/10.1016/j.isci.2023.106656
[47]  Moldovan, L. and Moldovan, N.I. (2004) Oxygen Free Radicals and Redox Biology of Organelles. Histochemistry and Cell Biology, 122, 395-412.
https://doi.org/10.1007/s00418-004-0676-y
[48]  Conrad, M. and Pratt, D.A. (2019) The Chemical Basis of Ferroptosis. Nature Chemical Biology, 15, 1137-1147.
https://doi.org/10.1038/s41589-019-0408-1
[49]  Cabantchik, Z.I. (2014) Labile Iron in Cells and Body Fluids: Physiology, Pathology, and Pharmacology. Frontiers in Pharmacology, 5, Article 45.
https://doi.org/10.3389/fphar.2014.00045
[50]  Zarjou, A., Bolisetty, S., Joseph, R., et al. (2013) Proximal Tubule H-Ferritin Mediates Iron Trafficking in Acute Kidney Injury. Journal of Clinical Investigation, 123, 4423-4434.
https://doi.org/10.1172/JCI67867
[51]  Sun, X., Ou, Z., Xie, M., et al. (2015) HSPB1 as a Novel Regulator of Ferroptotic Cancer Cell Death. Oncogene, 34, 5617-5625.
https://doi.org/10.1038/onc.2015.32
[52]  Lu, S., Song, Y., et al. (2021) Ferroportin-Dependent Iron Homeostasis Protects against Oxidative Stress-Induced Nucleus Pulposus Cell Ferroptosis and Ameliorates Intervertebral Disc Degeneration in Vivo. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6670497.
https://doi.org/10.1155/2021/6670497
[53]  Harrison, P.M. and Arosio, P. (1996) The Ferritins: Molecular Properties, Iron Storage Function and Cellular Regulation. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1275, 161-203.
https://doi.org/10.1016/0005-2728(96)00022-9
[54]  Latunde-Dada, G.O. (2017) Ferroptosis: Role of Lipid Peroxidation, Iron and Ferritinophagy. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861, 1893-1900.
https://doi.org/10.1016/j.bbagen.2017.05.019
[55]  De Vries, B., Walter, S.J., Von Bonsdorff, L., et al. (2004) Reduction of Circulating Redox-Active Iron by Apotransferrin Protects against Renal Ischemia-Reperfusion Injury. Transplantation, 77, 669-675.
https://doi.org/10.1097/01.TP.0000115002.28575.E7
[56]  Scindia, Y., Dey, P., Thirunagari, A., et al. (2015) Hepcidin Mitigates Renal Ischemia-Reperfusion Injury by Modulating Systemic Iron Homeostasis. Journal of the American Society of Nephrology, 26, 2800-2814.
https://doi.org/10.1681/ASN.2014101037
[57]  Paller, M.S. and Hedlund, B.E. (1994) Extracellular Iron Chelators Protect Kidney Cells from Hypoxia/Reoxygenation. Free Radical Biology and Medicine, 17, 597-603.
https://doi.org/10.1016/0891-5849(94)90099-X
[58]  Dragsten, P.R., Hallaway, P.E., Hanson, G.J., Berger, A.E., Bernard, B. and Hedlund, B.E. (2000) First Human Studies with a High-Molecular-Weight Iron Chelator. Translational Research, 135, 57-65.
https://doi.org/10.1016/S0022-2143(00)70021-7
[59]  Bannai, S. (1986) Exchange of Cystine and Glutamate across Plasma Membrane of Human Fibroblasts. The Journal of Biological Chemistry, 261, 2256-2263.
https://doi.org/10.1016/S0021-9258(17)35926-4
[60]  Koppula, P., Zhuang, L. and Gan, B. (2021) Cystine Transporter SLC7A11/XCT in Cancer: Ferroptosis, Nutrient Dependency, and Cancer Therapy. Protein & Cell, 12, 599-620.
https://doi.org/10.1007/s13238-020-00789-5
[61]  Friedmann Angeli, J.P., Schneider, M., Proneth, B., et al. (2014) Inactivation of the Ferroptosis Regulator Gpx4 Triggers Acute Renal Failure in Mice. Nature Cell Biology, 16, 1180-1191.
https://doi.org/10.1038/ncb3064
[62]  Ding, C., Ding, X., Zheng, J., et al. (2020) miR-182-5p and miR-378a-3p Regulate Ferroptosis in I/R-Induced Renal Injury. Cell Death & Disease, 11, Article No. 929.
https://doi.org/10.1038/s41419-020-03135-z
[63]  Doll, S., Freitas, F.P., Shah, R., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698.
https://doi.org/10.1038/s41586-019-1707-0
[64]  Wu, Y., Shi, H., Zheng, J., et al. (2023) Overexpression of FSP1 Ameliorates Ferroptosis via PI3K/AKT/GSK3β Pathway in PC12 Cells with Oxygen-Glucose Deprivation/Reoxygenation. Heliyon, 9, E18449.
https://doi.org/10.1016/j.heliyon.2023.e18449
[65]  Madak, J.T., Bankhead, A., Cuthbertson, C.R., Showalter, H.D. and Neamati, N. (2019) Revisiting the Role of Dihydroorotate Dehydrogenase as a Therapeutic Target for Cancer. Pharmacology & Therapeutics, 195, 111-131.
https://doi.org/10.1016/j.pharmthera.2018.10.012
[66]  Mao, C., Liu, X., Zhang, Y., et al. (2021) DHODH-Mediated Ferroptosis Defence Is a Targetable Vulnerability in Cancer. Nature, 593, 586-590.
https://doi.org/10.1038/s41586-021-03539-7
[67]  Alexander, E.D., Aldridge, J.L., Burleson, T.S. and Frasier, C.R. (2023) Teriflunomide Treatment Exacerbates Cardiac Ischemia Reperfusion Injury in Isolated Rat Hearts. Cardiovascular Drugs and Therapy, 37, 1021-1026.
https://doi.org/10.1007/s10557-022-07341-z
[68]  Baird, L. and Yamamoto, M. (2020) The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Molecular and Cellular Biology, 40, e00099-e00020.
https://doi.org/10.1128/MCB.00099-20
[69]  Komatsu, M., Kurokawa, H., Waguri, S., et al. (2010) The Selective Autophagy Substrate P62 Activates the Stress Responsive Transcription Factor Nrf2 through Inactivation of Keap1. Nature Cell Biology, 12, 213-223.
https://doi.org/10.1038/ncb2021
[70]  Shakya, A., McKee, N.W., Dodson, M., Chapman, E. and Zhang, D.D. (2023) Anti-Ferroptotic Effects of Nrf2: Beyond the Antioxidant Response. Molecules and Cells, 46, 165-175.
https://doi.org/10.14348/molcells.2023.0005
[71]  Yang, J., Sun, X., Huang, N., et al. (2022) Entacapone Alleviates Acute Kidney Injury by Inhibiting Ferroptosis. The FASEB Journal, 36, e22399.
https://doi.org/10.1096/fj.202200241RR
[72]  Huang, Y.B., Jiang, L., Liu, X.Q., et al. (2022) Melatonin Alleviates Acute Kidney Injury by Inhibiting NRF2/Slc7a11 Axis-Mediated Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4776243.
https://doi.org/10.1155/2022/4776243
[73]  Sun, Z., Wu, J., Bi, Q. and Wang, W. (2022) Exosomal lncRNA TUG1 Derived from Human Urine-Derived Stem Cells Attenuates Renal Ischemia/Reperfusion Injury by Interacting with SRSF1 to Regulate ASCL4-Mediated Ferroptosis. Stem Cell Research & Therapy, 13, Article No. 297.
https://doi.org/10.1186/s13287-022-02986-x
[74]  Shi, L., Song, Z., Li, Y., et al. (2023) miR-20a-5p Alleviates Kidney Ischemia/Reperfusion Injury by Targeting ACSL4-Dependent Ferroptosis. American Journal of Transplantation, 23, 11-25.
https://doi.org/10.1016/j.ajt.2022.09.003
[75]  Li, X., Peng, X., Zhou, X., et al. (2023) Small Extracellular Vesicles Delivering lncRNA WAC-AS1 Aggravate Renal Allograft Ischemia-Reperfusion Injury by Inducing Ferroptosis Propagation. Cell Death & Differentiation, 30, 2167-2186.
https://doi.org/10.1038/s41418-023-01198-x
[76]  Song, J., Sheng, J., Lei, J., Gan, W. and Yang, Y. (2022) Mitochondrial Targeted Antioxidant SKQ1 Ameliorates Acute Kidney Injury by Inhibiting Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2223957.
https://doi.org/10.1155/2022/2223957
[77]  Han, Y., Yuan, H., Li, F., et al. (2023) Ammidin Ameliorates Myocardial Hypoxia/Reoxygenation Injury by Inhibiting the ACSL4/AMPK/mTOR-Mediated Ferroptosis Pathway. BMC Complementary Medicine and Therapies, 23, Article No. 459.
https://doi.org/10.1186/s12906-023-04289-x
[78]  Du, Y.W., Li, X.K., Wang, T.T., et al. (2023) Cyanidin-3-Glucoside Inhibits Ferroptosis in Renal Tubular Cells after Ischemia/Reperfusion Injury via the AMPK Pathway. Molecular Medicine, 29, Article No. 42.
https://doi.org/10.1186/s10020-023-00642-5
[79]  Wang, H., Guo, S., Wang, B., et al. (2023) Carnosine Attenuates Renal Ischemia-Reperfusion Injury by Inhibiting GPX4-Mediated Ferroptosis. International Immunopharmacology, 124, Article 110850.
https://doi.org/10.1016/j.intimp.2023.110850
[80]  Ma, L., Liu, X., Zhang, M., et al. (2023) Paeoniflorin Alleviates Ischemia/Reperfusion Induced Acute Kidney Injury by Inhibiting Slc7a11-Mediated Ferroptosis. International Immunopharmacology, 116, Article 109754.
https://doi.org/10.1016/j.intimp.2023.109754
[81]  Jiang, G.-P., Liao, Y.-J., Huang, L.-L., Zeng, X.-J. and Liao, X.-H. (2021) Effects and Molecular Mechanism of Pachymic Acid on Ferroptosis in Renal Ischemia Reperfusion Injury. Molecular Medicine Reports, 23, Article No. 63.
https://doi.org/10.3892/mmr.2020.11704
[82]  Qi, Y., Hu, M., Qiu, Y., et al. (2023) Mitoglitazone Ameliorates Renal Ischemia/Reperfusion Injury by Inhibiting Ferroptosis via Targeting mitoNEET. Toxicology and Applied Pharmacology, 465, Article 116440.
https://doi.org/10.1016/j.taap.2023.116440
[83]  Jian, J., Wang, D., Xiong, Y., et al. (2023) Puerarin Alleviated Oxidative Stress and Ferroptosis during Renal Fibrosis Induced by Ischemia/Reperfusion Injury via TLR4/Nox4 Pathway in Rats. Acta Cirúrgica Brasileira, 38, e382523.
https://doi.org/10.1590/acb382523
[84]  Pan, J., Zhao, J., Feng, L., Xu, X., He, Z. and Liang, W. (2023) Inhibition of USP14 Suppresses ROS-Dependent Ferroptosis and Alleviates Renal Ischemia/Reperfusion Injury. Cell Biochemistry and Biophysics, 81, 87-96.
https://doi.org/10.1007/s12013-022-01107-y
[85]  Su, L., Jiang, X., Yang, C., et al. (2019) Pannexin 1 Mediates Ferroptosis that Contributes to Renal Ischemia/Reperfusion Injury. Journal of Biological Chemistry, 294, 19395-19404.
https://doi.org/10.1074/jbc.RA119.010949
[86]  Zhong, D., Quan, L., Hao, C., et al. (2023) Targeting mPGES-2 to Protect against Acute Kidney Injury via Inhibition of Ferroptosis Dependent on P53. Cell Death & Disease, 14, Article No. 710.
https://doi.org/10.1038/s41419-023-06236-7
[87]  Feng, R., Xiong, Y., Lei, Y., et al. (2022) Lysine-Specific Demethylase 1 Aggravated Oxidative Stress and Ferroptosis Induced by Renal Ischemia and Reperfusion Injury through Activation of TLR4/NOX4 Pathway in Mice. Journal of Cellular and Molecular Medicine, 26, 4254-4267.
https://doi.org/10.1111/jcmm.17444
[88]  Ding, C., Wang, B., Zheng, J., et al. (2023) Neutrophil Membrane-Inspired Nanorobots Act as Antioxidants Ameliorate Ischemia Reperfusion-Induced Acute Kidney Injury. ACS Applied Materials & Interfaces, 15, 40292-40303.
https://doi.org/10.1021/acsami.3c08573
[89]  Liu, Z., Liu, X., Yang, Q., Yu, L., Chang, Y. and Qu, M. (2020) Neutrophil Membrane-Enveloped Nanoparticles for the Amelioration of Renal Ischemia-Reperfusion Injury in Mice. Acta Biomaterialia, 104, 158-166.
https://doi.org/10.1016/j.actbio.2020.01.018
[90]  Liu, Z., Li, Y., Li, C., Yu, L., Chang, Y. and Qu, M. (2021) Delivery of Coenzyme Q10 with Mitochondria-Targeted Nanocarrier Attenuates Renal Ischemia-Reperfusion Injury in Mice. Materials Science and Engineering: C, 131, Article 112536.
https://doi.org/10.1016/j.msec.2021.112536

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133